Mostrar el registro sencillo del ítem
Measuring trace element fingerprinting for cereal bar authentication based on type and principal ingredient
| dc.contributor.author | Pérez Rodríguez, Michael | |
| dc.contributor.author | Hidalgo, Melisa Jazmin | |
| dc.contributor.author | Mendoza, Alberto | |
| dc.contributor.author | González, Lucy T. | |
| dc.contributor.author | Longoria Rodríguez, Francisco | |
| dc.contributor.author | Goicoechea, Héctor Casimiro | |
| dc.contributor.author | Pellerano, Roberto Gerardo | |
| dc.date.accessioned | 2025-12-05T11:11:38Z | |
| dc.date.available | 2025-12-05T11:11:38Z | |
| dc.date.issued | 2023-06-07 | |
| dc.identifier.citation | Pérez Rodríguez, Michael, et al., 2023. Measuring trace element fingerprinting for cereal bar authentication based on type and principal ingredient. Food Chemistry: X. Ámsterdam: Países Bajos, vol. 18, p. 1-7. E-ISSN 2772-753X. DOI https://doi.org/10.1016/j.fochx.2023.100744 | es |
| dc.identifier.uri | http://repositorio.unne.edu.ar/handle/123456789/59136 | |
| dc.description.abstract | This paper introduces a method for determining the authenticity of commercial cereal bars based on trace element fingerprints. In this regard, 120 cereal bars were prepared using microwave-assisted acid digestion and the concentrations of Al, Ba, Bi, Cd, Co, Cr, Cu, Fe, Li, Mn, Mo, Ni, Pb, Rb, Se, Sn, Sr, V, and Zn were later measured by ICP-MS. Results confirmed the suitability of the analyzed samples for human consumption. Multielemental data underwent autoscaling preprocessing for then applying PCA, CART, and LDA to input data set. LDA model accomplished the highest classification modeling performance with a success rate of 92%, making it the suitable model for reliable cereal bar prediction. The proposed method demonstrates the potential of trace element fingerprints in distinguishing cereal bar samples according to their type (conventional and gluten-free) and principal ingredient (fruit, yogurt, chocolate), thereby contributing to global efforts for food authentication. | en |
| dc.format | application/pdf | es |
| dc.format.extent | p. 1-7 | es |
| dc.language.iso | en | es |
| dc.publisher | Elsevier | es |
| dc.relation.uri | https://doi.org/10.1016/j.fochx.2023.100744 | es |
| dc.rights | openAccess | es |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/2.5/ar/ | es |
| dc.source | Food Chemistry: X, 2023, vol. 18, p. 1-7. | es |
| dc.subject | Cereal bars | en |
| dc.subject | Trace elements | en |
| dc.subject | Fingerprinting | en |
| dc.subject | ICP-MS | en |
| dc.subject | Authentication | en |
| dc.subject | LDA | en |
| dc.title | Measuring trace element fingerprinting for cereal bar authentication based on type and principal ingredient | en |
| dc.type | Artículo | es |
| unne.affiliation | Fil: Pérez Rodríguez, Michael. Escuela de Ingeniería y Ciencias. Tecnológico de Monterrey; México. | es |
| unne.affiliation | Fil: Hidalgo, Melisa Jazmin. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura; Argentina. | es |
| unne.affiliation | Fil: Mendoza, Alberto. Escuela de Ingeniería y Ciencias. Tecnológico de Monterrey; México. | es |
| unne.affiliation | Fil: González, Lucy T. Escuela de Ingeniería y Ciencias. Tecnológico de Monterrey; México. | es |
| unne.affiliation | Fil: Longoria Rodríguez, Francisco. Centro de Investigación en Materiales Avanzados; México. | es |
| unne.affiliation | Fil: Goicoechea, Héctor Casimiro. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas; Argentina. | es |
| unne.affiliation | Fil: Pellerano, Roberto Gerardo. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura; Argentina. | es |
| unne.journal.title | Food Chemistry Advances | |
| unne.journal.pais | Países Bajos | es |
| unne.journal.ciudad | Ámsterdam | es |
| unne.journal.volume | 18 | es |
| unne.ISSN-e | 2772-753X | es |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Artículos de revista [733]










