Mostrar el registro sencillo del ítem
Assessing mineral profiles for rice flour fraud detection by principal component analysis based data fusion
| dc.contributor.author | Pérez Rodríguez, Michael | |
| dc.contributor.author | Dirchwolf, Pamela Maia | |
| dc.contributor.author | Rodríguez Negrín, Zenaida | |
| dc.contributor.author | Pellerano, Roberto Gerardo | |
| dc.date.accessioned | 2025-12-05T11:11:37Z | |
| dc.date.available | 2025-12-05T11:11:37Z | |
| dc.date.issued | 2020-09-17 | |
| dc.identifier.citation | Pérez Rodríguez, Michael, et al., 2021. Assessing mineral profiles for rice flour fraud detection by principal component analysis based data fusion. Food Chemistry. Ámsterdam: Países Bajos, vol. 339, p. 1-7. E-ISSN 2772-753X. DOI https://doi.org/10.1016/j.foodchem.2020.128125 | es |
| dc.identifier.uri | http://repositorio.unne.edu.ar/handle/123456789/59134 | |
| dc.description.abstract | The present work proposes to detect adulteration in rice flour using mineral profiles. Eighty-seven flour samples from two rice kinds (Indica and Japonica) plus thirty adulterated flour samples were analyzed by ICP OES. After obtaining the quantitative elemental fingerprint of the samples, PCA and LDA were applied. Binary and multiclass associations were considered to assess rice flour authenticity through fraud identification. Models based on element predictors showed accuracies ranging from 72 to 88% to distinguish adulterated and unadulterated samples. The fusion of the mineral features with the principal components (PCs) obtained from PCA provided classification rates of 100% in training samples, and 91–100% in test samples. The proposed method proved to be a useful tool for quality control in the rice industry since a perfect success rate was achieved for rice flour fraud detection. | en |
| dc.format | application/pdf | es |
| dc.format.extent | p. 1-7 | es |
| dc.language.iso | en | es |
| dc.publisher | Elsevier | es |
| dc.relation.uri | https://doi.org/10.1016/j.foodchem.2020.128125 | es |
| dc.rights | restrictedAccess | es |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/2.5/ar/ | es |
| dc.source | Food Chemistry, 2021, vol. 339, p. 1-7. | es |
| dc.subject | Rice flour | en |
| dc.subject | Adulteration | en |
| dc.subject | Mineral profiles | en |
| dc.subject | LDA | en |
| dc.subject | PCA based data fusion | en |
| dc.title | Assessing mineral profiles for rice flour fraud detection by principal component analysis based data fusion | en |
| dc.type | Artículo | es |
| unne.affiliation | Fil: Pérez Rodríguez, Michael. Universidad Central de Las Villas. Centro de Bioactivos Químicos; Cuba. | es |
| unne.affiliation | Fil: Pérez Rodríguez, Michael. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química Básica y Aplicada del Nordeste Argentino; Argentina. | es |
| unne.affiliation | Fil: Dirchwolf, Pamela Maia. Universidad Nacional del Nordeste. Facultad de Ciencias Agrarias; Argentina. | es |
| unne.affiliation | Fil: Rodríguez Negrín, Zenaida. Universidad Central de Las Villas. Centro de Bioactivos Químicos; Cuba. | es |
| unne.affiliation | Fil: Pellerano, Roberto Gerardo. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura; Argentina. | es |
| unne.affiliation | Fil: Pellerano, Roberto Gerardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química Básica y Aplicada del Nordeste Argentino; Argentina. | es |
| unne.journal.title | Food Chemistry Advances | |
| unne.journal.pais | Países Bajos | es |
| unne.journal.ciudad | Ámsterdam | es |
| unne.journal.volume | 339 | es |
| unne.ISSN-e | 2772-753X | es |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Artículos de revista [733]










