Mostrar el registro sencillo del ítem

dc.contributor.authorPérez Rodríguez, Michael
dc.contributor.authorDirchwolf, Pamela Maia
dc.contributor.authorRodríguez Negrín, Zenaida
dc.contributor.authorPellerano, Roberto Gerardo
dc.date.accessioned2025-12-05T11:11:37Z
dc.date.available2025-12-05T11:11:37Z
dc.date.issued2020-09-17
dc.identifier.citationPérez Rodríguez, Michael, et al., 2021. Assessing mineral profiles for rice flour fraud detection by principal component analysis based data fusion. Food Chemistry. Ámsterdam: Países Bajos, vol. 339, p. 1-7. E-ISSN 2772-753X. DOI https://doi.org/10.1016/j.foodchem.2020.128125es
dc.identifier.urihttp://repositorio.unne.edu.ar/handle/123456789/59134
dc.description.abstractThe present work proposes to detect adulteration in rice flour using mineral profiles. Eighty-seven flour samples from two rice kinds (Indica and Japonica) plus thirty adulterated flour samples were analyzed by ICP OES. After obtaining the quantitative elemental fingerprint of the samples, PCA and LDA were applied. Binary and multiclass associations were considered to assess rice flour authenticity through fraud identification. Models based on element predictors showed accuracies ranging from 72 to 88% to distinguish adulterated and unadulterated samples. The fusion of the mineral features with the principal components (PCs) obtained from PCA provided classification rates of 100% in training samples, and 91–100% in test samples. The proposed method proved to be a useful tool for quality control in the rice industry since a perfect success rate was achieved for rice flour fraud detection.en
dc.formatapplication/pdfes
dc.format.extentp. 1-7es
dc.language.isoenes
dc.publisherElsevieres
dc.relation.urihttps://doi.org/10.1016/j.foodchem.2020.128125es
dc.rightsrestrictedAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/ar/es
dc.sourceFood Chemistry, 2021, vol. 339, p. 1-7.es
dc.subjectRice flouren
dc.subjectAdulterationen
dc.subjectMineral profilesen
dc.subjectLDAen
dc.subjectPCA based data fusionen
dc.titleAssessing mineral profiles for rice flour fraud detection by principal component analysis based data fusionen
dc.typeArtículoes
unne.affiliationFil: Pérez Rodríguez, Michael. Universidad Central de Las Villas. Centro de Bioactivos Químicos; Cuba.es
unne.affiliationFil: Pérez Rodríguez, Michael. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química Básica y Aplicada del Nordeste Argentino; Argentina.es
unne.affiliationFil: Dirchwolf, Pamela Maia. Universidad Nacional del Nordeste. Facultad de Ciencias Agrarias; Argentina.es
unne.affiliationFil: Rodríguez Negrín, Zenaida. Universidad Central de Las Villas. Centro de Bioactivos Químicos; Cuba.es
unne.affiliationFil: Pellerano, Roberto Gerardo. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura; Argentina.es
unne.affiliationFil: Pellerano, Roberto Gerardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química Básica y Aplicada del Nordeste Argentino; Argentina.es
unne.journal.titleFood Chemistry Advances
unne.journal.paisPaíses Bajoses
unne.journal.ciudadÁmsterdames
unne.journal.volume339es
unne.ISSN-e2772-753Xes


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

restrictedAccess
Excepto si se señala otra cosa, la licencia del ítem se describe comorestrictedAccess