Mostrar el registro sencillo del ítem

dc.contributor.authorLuchi, Adriano Martín
dc.contributor.authorVillafañe, Roxana Noelia
dc.contributor.authorGómez Chávez, José Leonardo
dc.contributor.authorBogado, María Lucrecia
dc.contributor.authorAngelina, Emilio Luis
dc.contributor.authorPeruchena, Nélida María
dc.date.accessioned2025-04-16T14:14:58Z
dc.date.available2025-04-16T14:14:58Z
dc.date.issued2019
dc.identifier.citationLuchi, Adriano Martín, et al., 2019. Combining charge density analysis with machine learning tools to investigate the Cruzain inhibition mechanism. ACS Omega. Washington: American Chemical Society, vol. 4, no. 22, p. 19582−19594. ISSN 2470-1343.es
dc.identifier.issn2470-1343es
dc.identifier.urihttp://repositorio.unne.edu.ar/handle/123456789/56524
dc.description.abstractTrypanosoma cruzi, a flagellate protozoan parasite, is responsible for Chagas disease. The parasite major cysteine protease, cruzain (Cz), plays a vital role at every stage of its life cycle and the active-site region of the enzyme, similar to those of other members of the papain superfamily, is well characterized. Taking advantage of structural information available in public databases about Cz bound to known covalent inhibitors, along with their corresponding activity annotations, in this work, we performed a deep analysis of the molecular interactions at the Cz binding cleft, in order to investigate the enzyme inhibition mechanism. Our toolbox for performing this study consisted of the charge density topological analysis of the complexes to extract the molecular interactions and machine learning classification models to relate the interactions with biological activity. More precisely, such a combination was useful for the classification of molecular interactions as “active-like” or “inactive-like” according to whether they are prevalent in the most active or less active complexes, respectively. Further analysis of interactions with the help of unsupervised learning tools also allowed the understanding of how these interactions come into play together to trigger the enzyme into a particular conformational state. Most active inhibitors induce some conformational changes within the enzyme that lead to an overall better fit of the inhibitor into the binding cleft. Curiously, some of these conformational changes can be considered as a hallmark of the substrate recognition event, which means that most active inhibitors are likely recognized by the enzyme as if they were its own substrate so that the catalytic machinery is arranged as if it is about to break the substrate scissile bond. Overall, these results contribute to a better understanding of the enzyme inhibition mechanism. Moreover, the information about main interactions extracted through this work is already being used in our lab to guide docking solutions in ongoing prospective virtual screening campaigns to search for novel noncovalent cruzain inhibitors.es
dc.formatapplication/pdfes
dc.format.extentp. 19582−19594es
dc.language.isoenges
dc.publisherAmerican Chemical Societyes
dc.relation.urihttps://pubs.acs.org/doi/epdf/10.1021/acsomega.9b01934?ref=article_openPDFes
dc.rightsopenAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/ar/es
dc.sourceACS Omega, 2019, vol. 4, no. 22, p. 19582−19594.es
dc.subjectTrypanosoma cruzies
dc.subjectChagas diseasees
dc.subjectParasitees
dc.titleCombining charge density analysis with machine learning tools to investigate the Cruzain inhibition mechanismes
dc.typeArtículoes
unne.affiliationFil: Luchi, Adriano Martín. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura; Argentina.es
unne.affiliationFil: Luchi, Adriano Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química Básica y Aplicada del Nordeste; Argentina.es
unne.affiliationFil: Villafañe, Roxana Noelia. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura; Argentina.es
unne.affiliationFil: Villafañe, Roxana Noelia. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química Básica y Aplicada del Nordeste; Argentina.es
unne.affiliationFil: Gómez Chávez, José Leonardo. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura; Argentina.es
unne.affiliationFil: Gómez Chávez, José Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química Básica y Aplicada del Nordeste; Argentina.es
unne.affiliationFil: Bogado, María Lucrecia. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura; Argentina.es
unne.affiliationFil: Bogado, María Lucrecia. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química Básica y Aplicada del Nordeste; Argentina.es
unne.affiliationFil: Angelina, Emilio Luis. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura; Argentina.es
unne.affiliationFil: Angelina, Emilio Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química Básica y Aplicada del Nordeste; Argentina.es
unne.affiliationFil: Peruchena, Nélida María. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura; Argentina.es
unne.affiliationFil: Peruchena, Nélida María. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química Básica y Aplicada del Nordeste; Argentina.es
unne.journal.paisEstados Unidoses
unne.journal.ciudadWashingtones
unne.journal.volume4es
unne.journal.number22es


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

openAccess
Excepto si se señala otra cosa, la licencia del ítem se describe comoopenAccess