Mostrar el registro sencillo del ítem
Estimation of the functional form of subgrid-scale parametrizations using ensemble-based data assimilation : a simplemodel experiment
| dc.contributor.author | Pulido, Manuel Arturo | |
| dc.contributor.author | Scheffler, Guillermo | |
| dc.contributor.author | Ruiz, Juan José | |
| dc.contributor.author | Lucini, María Magdalena | |
| dc.contributor.author | Tandeo, Pierre | |
| dc.date.accessioned | 2021-12-09T15:31:07Z | |
| dc.date.available | 2021-12-09T15:31:07Z | |
| dc.date.issued | 2016 | |
| dc.identifier.citation | Pulido, Manuel Arturo, et. al., 2016. Estimation of the functional form of subgrid-scale parametrizations using ensemble-based data assimilation : a simplemodel experiment. Quarterly Journal of the Royal Meteorological Society. Londres: Royal Meteorological Society, vol. 142, p. 2974–2984. ISSN 0035-9009. | es |
| dc.identifier.issn | 0035-9009 | es |
| dc.identifier.uri | http://repositorio.unne.edu.ar/handle/123456789/30326 | |
| dc.description.abstract | Oceanic and atmospheric global numerical models represent explicitly the large-scale dynamics while the smaller-scale processes are not resolved, so that their effects in the large-scale dynamics are included through subgrid-scale parametrizations. These parametrizations represent small-scale effects as a function of the resolved variables. In this work, data assimilation principles are used not only to estimate the parameters of subgrid-scale parametrizations but also to uncover the functional dependencies of subgridscale processes as a function of large-scale variables. Two data assimilation methods based on the ensemble transform Kalman filter (ETKF) are evaluated in the two-scale Lorenz ’96 system scenario. The first method is an online estimation which uses the ETKF with an augmented space state composed of the model large-scale variables and a set of unknown global parameters from the parametrization. The second method is an offline estimation which uses the ETKF to estimate an augmented space state composed of the large-scale variables and by a space-dependentmodel error term. Then a polynomial regression is used to fit the estimated model error as a function of the large-scale model variables in order to develop a parametrization of small-scale dynamics. The online estimation shows a Good performancewhen the parameter-state relationship is assumed to be a quadratic polynomial function. The offline estimation captures better some of the highly nonlinear functional dependencies found in the subgrid-scale processes. The nonlinear and non-local dependence found in an experiment with shear-generated small-scale dynamics is also recovered by the offline estimation method. Therefore, the combination of these two methods could be a useful tool for the estimation of the functional form of subgrid-scale parametrizations. | es |
| dc.format | application/pdf | es |
| dc.language.iso | eng | es |
| dc.publisher | Royal Meteorological Society | es |
| dc.rights | openAccess | es |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/2.5/ar/ | es |
| dc.source | Quarterly Journal of the Royal Meteorological Society, 2016, vol. 142, p. 2974–2984. | es |
| dc.subject | EnKF | es |
| dc.subject | Parameter estimation | es |
| dc.subject | Subgrid-scale schemes | es |
| dc.subject | Lorenz ’96 system | es |
| dc.subject | Parametrization | es |
| dc.title | Estimation of the functional form of subgrid-scale parametrizations using ensemble-based data assimilation : a simplemodel experiment | es |
| dc.type | Artículo | es |
| unne.affiliation | Fil: Pulido, Manuel Arturo. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura; Argentina. | es |
| unne.affiliation | Fil: Pulido, Manuel Arturo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Franco-Argentino de Estudios sobre el Clima y sus Impactos; Argetina. | es |
| unne.affiliation | Fil: Scheffler, Guillermo. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura; Argentina. | es |
| unne.affiliation | Fil: Scheffler, Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. | es |
| unne.affiliation | Fil: Ruiz, Juan José. Universidad de Buenos Aires. Centro de Investigaciones del Mar y la Atmósfera; Argentina. | es |
| unne.affiliation | Fil: Ruiz, Juan José. Advanced Institute for Computational Science, Kobe; Japón. | es |
| unne.affiliation | Fil: Ruiz, Juan José. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Franco-Argentino de Estudios sobre el Clima y sus Impactos; Argentina. | es |
| unne.affiliation | Fil: Lucini, María Magdalena. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura; Argentina. | es |
| unne.affiliation | Fil: Lucini, María Magdalena. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. | es |
| unne.affiliation | Fil: Tandeo, Pierre. Laboratoire des Sciences et Techniques de l'information de la Communication et de la Connaissance; Francia. | es |
| unne.journal.pais | Inglaterra | es |
| unne.journal.ciudad | Londres | es |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Artículos de revista [764]










