Mostrar el registro sencillo del ítem

dc.contributor.authorPulido, Manuel Arturo
dc.contributor.authorScheffler, Guillermo
dc.contributor.authorRuiz, Juan José
dc.contributor.authorLucini, María Magdalena
dc.contributor.authorTandeo, Pierre
dc.date.accessioned2021-12-09T15:31:07Z
dc.date.available2021-12-09T15:31:07Z
dc.date.issued2016
dc.identifier.citationPulido, Manuel Arturo, et. al., 2016. Estimation of the functional form of subgrid-scale parametrizations using ensemble-based data assimilation : a simplemodel experiment. Quarterly Journal of the Royal Meteorological Society. Londres: Royal Meteorological Society, vol. 142, p. 2974–2984. ISSN 0035-9009.es
dc.identifier.issn0035-9009es
dc.identifier.urihttp://repositorio.unne.edu.ar/handle/123456789/30326
dc.description.abstractOceanic and atmospheric global numerical models represent explicitly the large-scale dynamics while the smaller-scale processes are not resolved, so that their effects in the large-scale dynamics are included through subgrid-scale parametrizations. These parametrizations represent small-scale effects as a function of the resolved variables. In this work, data assimilation principles are used not only to estimate the parameters of subgrid-scale parametrizations but also to uncover the functional dependencies of subgridscale processes as a function of large-scale variables. Two data assimilation methods based on the ensemble transform Kalman filter (ETKF) are evaluated in the two-scale Lorenz ’96 system scenario. The first method is an online estimation which uses the ETKF with an augmented space state composed of the model large-scale variables and a set of unknown global parameters from the parametrization. The second method is an offline estimation which uses the ETKF to estimate an augmented space state composed of the large-scale variables and by a space-dependentmodel error term. Then a polynomial regression is used to fit the estimated model error as a function of the large-scale model variables in order to develop a parametrization of small-scale dynamics. The online estimation shows a Good performancewhen the parameter-state relationship is assumed to be a quadratic polynomial function. The offline estimation captures better some of the highly nonlinear functional dependencies found in the subgrid-scale processes. The nonlinear and non-local dependence found in an experiment with shear-generated small-scale dynamics is also recovered by the offline estimation method. Therefore, the combination of these two methods could be a useful tool for the estimation of the functional form of subgrid-scale parametrizations.es
dc.formatapplication/pdfes
dc.language.isoenges
dc.publisherRoyal Meteorological Societyes
dc.rightsopenAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/ar/es
dc.sourceQuarterly Journal of the Royal Meteorological Society, 2016, vol. 142, p. 2974–2984.es
dc.subjectEnKFes
dc.subjectParameter estimationes
dc.subjectSubgrid-scale schemeses
dc.subjectLorenz ’96 systemes
dc.subjectParametrizationes
dc.titleEstimation of the functional form of subgrid-scale parametrizations using ensemble-based data assimilation : a simplemodel experimentes
dc.typeArtículoes
unne.affiliationFil: Pulido, Manuel Arturo. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura; Argentina.es
unne.affiliationFil: Pulido, Manuel Arturo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Franco-Argentino de Estudios sobre el Clima y sus Impactos; Argetina.es
unne.affiliationFil: Scheffler, Guillermo. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura; Argentina.es
unne.affiliationFil: Scheffler, Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.es
unne.affiliationFil: Ruiz, Juan José. Universidad de Buenos Aires. Centro de Investigaciones del Mar y la Atmósfera; Argentina.es
unne.affiliationFil: Ruiz, Juan José. Advanced Institute for Computational Science, Kobe; Japón.es
unne.affiliationFil: Ruiz, Juan José. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Franco-Argentino de Estudios sobre el Clima y sus Impactos; Argentina.es
unne.affiliationFil: Lucini, María Magdalena. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura; Argentina.es
unne.affiliationFil: Lucini, María Magdalena. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.es
unne.affiliationFil: Tandeo, Pierre. Laboratoire des Sciences et Techniques de l'information de la Communication et de la Connaissance; Francia.es
unne.journal.paisInglaterraes
unne.journal.ciudadLondreses


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

openAccess
Excepto si se señala otra cosa, la licencia del ítem se describe comoopenAccess