Mostrar el registro sencillo del ítem

dc.contributor.authorPérez Rodríguez, Michael
dc.contributor.authorDirchwolf, Pamela Maia
dc.contributor.authorSilva, Tiago Varão
dc.contributor.authorVillafañe, Roxana Noelia
dc.contributor.authorGómez Neto, José Anchieta
dc.contributor.authorPellerano, Roberto Gerardo
dc.contributor.authorFerreira, Edilene Cristina
dc.date.accessioned2021-05-26T22:10:29Z
dc.date.available2021-05-26T22:10:29Z
dc.date.issued2019-06-08
dc.identifier.citationPérez Rodríguez, Michael, et. al., 2019. Brown rice authenticity evaluation by spark discharge-laser-induced breakdown spectroscopy. Food Chemistry. Países Bajos, Ámsterdam: Elsevier, vol. 297, p. 1-6. ISSN 0308-8146.es
dc.identifier.issn0308-8146es
dc.identifier.urihttp://repositorio.unne.edu.ar/handle/123456789/27982
dc.description.abstractRice is the most consumed food worldwide, therefore its designation of origin (PDO) is very useful. Laserinduced breakdown spectroscopy (LIBS) is an interesting analytical technique for PDO certification, since it provides fast multielemental analysis requiring minimal sample treatment. In this work LIBS spectral data from rice analysis were evaluated for PDO certification of Argentine brown rice. Samples from two PDOs were analyzed by LIBS coupled to spark discharge. The selection of spectral data was accomplished by extreme gradient boosting (XGBoost), an algorithm currently used in machine learning, but rarely applied in chemical issues. Emission lines of C, Ca, Fe, Mg and Na were selected, and the best performance of classification were obtained using k-nearest neighbor (k-NN) algorithm. The developed method provided 84% of accuracy, 100% of sensitivity and 78% of specificity in classification of test samples. Furthermore, it is simple, clean and can be easily applied for rice certification.es
dc.formatapplication/pdfes
dc.language.isoenges
dc.publisherElsevieres
dc.rightsopenAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/ar/es
dc.sourceFood Chemistry, 2019, vol. 297, p. 1-6.es
dc.subjectFood authenticityes
dc.subjectPdoes
dc.subjectBrown ricees
dc.subjectSd-Libses
dc.subjectPattern recognitiones
dc.titleBrown rice authenticity evaluation by spark discharge-laser-induced breakdown spectroscopyes
dc.typeArtículoes
unne.affiliationFil: Pérez Rodríguez, Michael. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura; Argentina.es
unne.affiliationFil: Pérez Rodríguez, Michael. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química Básica y Aplicada del Nordeste Argentino; Argentina.es
unne.affiliationFil: Dirchwolf, Pamela Maia. Universidad Nacional del Nordeste. Facultad de Ciencias Agrarias; Argentina.es
unne.affiliationFil: Silva, Tiago Varão. Universidad Estadual de São Paulo. Instituto de Química de Araraquara; Brasil.es
unne.affiliationFil: Villafañe, Roxana Noelia. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia. Instituto de Química San Luis; Argentina.es
unne.affiliationFil: Villafañe, Roxana Noelia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet-San Luis; Argentina.es
unne.affiliationFil: Gómez Neto, José Anchieta. Universidad Estadual de São Paulo. Instituto de Química de Araraquara; Brasil.es
unne.affiliationFil: Pellerano, Roberto Gerardo. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura; Argentina.es
unne.affiliationFil: Pellerano, Roberto Gerardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química Básica y Aplicada del Nordeste Argentino; Argentina.es
unne.affiliationFil: Ferreira, Edilene Cristina. Universidad Estadual de São Paulo. Instituto de Química de Araraquara; Brasil.es
unne.journal.paisPaíses Bajoses
unne.journal.ciudadÁmsterdames


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

openAccess
Excepto si se señala otra cosa, la licencia del ítem se describe comoopenAccess