Mostrar el registro sencillo del ítem

dc.contributor.authorWiesenfarth, Manuel
dc.contributor.authorHisgen, Carlos Matías
dc.contributor.authorKneib, Thomas
dc.contributor.authorCadarso Suárez, Carmen
dc.date.accessioned2025-08-05T14:09:22Z
dc.date.available2025-08-05T14:09:22Z
dc.date.issued2012
dc.identifier.citationWiesenfarth, Manuel, et. al., 2012. Bayesian nonparametric instrumental variable regression based on penalized splines and Dirichlet process mixtures. Germany: Georg-August-Universität Göttingen. Courant Research Centre. Poverty, Equity and Growthes
dc.identifier.urihttps://www.econstor.eu/bitstream/10419/90568/1/CRC-PEG_DP_127.pdf
dc.identifier.urihttp://repositorio.unne.edu.ar/handle/123456789/57160
dc.description.abstractWe propose a Bayesian nonparametric instrumental variable approach that allows us to correct for endogeneity bias in regression models where the covariate effects enter with unknown functional form. Bias correction relies on a simultaneous equations specification with flexible modeling of the joint error distribution implemented via a Dirichlet process mixture prior. Both the structural and instrumental variable equation are specified in terms of additive predictors comprising penalized splines for nonlinear effects of continuous covariates. Inference is fully Bayesian, employing efficient Markov Chain Monte Carlo simulation techniques. The resulting posterior samples do not only provide us with point estimates, but allow us to construct simultaneous credible bands for the nonparametric effects, including data-driven smoothing parameter selection. In addition, improved robustness properties are achieved due to the flexible error distribution specification. Both these features are extremely challenging in the classical framework, making the Bayesian one advantageous. In simulations, we investigate small sample properties and an investigation of the effect of class size on student performance in Israel provides an illustration of the proposed approach which is implemented in an R package bayesIV.es
dc.language.isoenges
dc.publisherGeorg-August-Universität Göttingen. Courant Research Centre. Poverty, Equity and Growthes
dc.relation.ispartofseriesDiscussion papers;127
dc.subjectEndogeneityes
dc.subjectMarkov Chain Monte Carlo methodses
dc.subjectSimultaneous credible bandses
dc.titleBayesian nonparametric instrumental variable regression based on penalized splines and Dirichlet process mixtureses
dc.typeWorking Paperes


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem