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Abstract
Purpose – There are many problems in civil or mechanical engineering related to structural design.
In such a case, the solution techniques which lead to deterministic results are no longer valid due to the
heuristic nature of design problems. The purpose of this paper is to propose a computational tool based on
genetic algorithms, applied to the optimal design of cross-sections (solid tubes) of 3D truss structures.
Design/methodology/approach – The main feature of this genetic algorithm approach is the
introduction of a selective-smart method developed in order to improve the convergence rate of large
optimization problems. This selective genetic algorithm is based on a preliminary sensitivity analysis
performed over each variable, in order to reduce the search space of the evolutionary process. In order
to account for the optimization of the total weight, the displacement (of a specific section) and the
internal stresses distribution of the structure a multiobjective optimization function was proposed.
Findings – The numerical results presented in this paper show a significant improvement in the
convergence rate as well as an important reduction in the relative error, compared to the exact solution.
Originality/value – The variables sensitivity analysis put forward in this approach introduces a
significant improvement in the convergence rate of the genetic algorithm proposed in this paper.
Keywords Sensitivity analysis, Genetic algorithm, Finite element method, 3D bars structure,
Multiobjective optimization
Paper type Research paper

1. Introduction
Usually, building design methodology is closely related to structural engineer
experience which in turn seizes the general guidelines taken from engineering project
or architectural design, and mainly this is the way in which restrictions and allowance
took over the initial sketch out. However, one new and at the time important tool is
generally underestimated, i.e. the scientific optimization analysis. An extended
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utilization of the above mentioned, would clearly improve the mechanical behavior of
the structural system as well as the residents comfort.

In addition, many engineering problems concerning the structural design may
be addressed with simplified or classic theories of materials mechanics as well as by
numerical approach based on the finite element method, leading in both cases to
deterministic solutions. However, the subset of optimal structural design does not
remain included in the set of deterministic field because of its heuristic dependence.
In these cases, the numerical solution can be obtained by iterative algorithms, such as
particle swarm optimization, genetic algorithm (GA), ant colony, etc. In such a way, the
non-deterministic numerical solution obtained defines a bounded domain where the
unique real solution is enclosed (Balamurugan et al., 2014; Belegundu and
Chandrupatla, 1999; Daei and Mirmohammadi, 2015).

The engineering problems related to structural design comprehend a wide
number of situations: trussed systems optimization in both two-dimensional and
three-dimensional (Coello and Cristiansen, 2000; Huang and Wang, 2008; Mroginski
et al., 2009; Talaslioglu, 2009; Thein and Liu, 2012; Torii et al., 2012), topology analysis
of plane frames structures (Stromberg et al., 2012), design of composite structural
sections (Lopez et al., 2009), micromechanics optimization (Huang et al., 2011),
performance of thermodynamic machines (Ahmadi et al., 2016; Sadatsakkak et al.,
2015), fiber reinforced polymeric (Cai and Aref, 2015), among others.

In this paper, a computational tool based on GA, applied to the 3D structural design is
proposed. Though for the time being the analysis is bounded to 3D truss-based structures,
it is perfectly possible to extend the general conclusions hereafter posed to cope with many
other stress-involved problems, namely, geometrically induced non-linearities (Di Rado
et al., 2008), geo-mechanical stress determination (Mroginski et al., 2010; Beneyto et al.,
2015), non-linear finite element (FE) analysis (Mroginski and Etse, 2013), etc.

The main feature of this GA is the inclusion of a selective-smart method developed
in order to improve the convergence rate of large optimization problems. This selective
genetic algorithm (SGA) is based on a preliminary sensitivity analysis performed over
each variable, in order to reduce the search space of the evolutionary process. Along
with the previous, the SGA was tested, on the one hand, with three different objective
functions in order to minimize the total weight, the displacement and/or the Euclidean
norm of internal stress. On the other hand, a multiobjective function was introduced in
order to simultaneously optimize the single objective functions described before.

Two numerical examples were considered. The first one is a small optimization
problem with 24 variables for each individual. The second one consists in a large
optimization problem of a 3D tower structure with 80 variables for each individual.
Both examples were analyzed with the classical non-selective genetic algorithm (NGA)
and the SGA proposed in this paper. The main difference between the NGA and the
SGA is that the preliminary sensitivity analysis is performed only in the SGA
algorithm. In order to get a similar relative error the required number of iterations is
quite different in both cases. Furthermore, when the proposed SGA is compared with
the NGA a significant improvement in the convergence rate as well as a good
approximation of the deterministic solution (in case of being known) can be observed,
from the numerical results presented in this paper.

2. Algorithm description
The theoretical framework of GA arises from the evolution theory of Darwin.
Therefore, the individuals with major aptitude in a population have a greater chance of
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survival. In the optimization problem, each individual represents a space of different
solutions and their aptitude is defined by the evaluation function. This function is
known as objective function and its extreme value is sought during the GA procedure.

2.1 Main features
The main features of the proposed algorithm are:

• Individuals are made up by the diameter of the bars.
• An elitist type of algorithm is used. Thus, most adapted individuals are directly

chosen out of the population and moved to the next generation without going
through the crossing process.

• The upper and lower variables bounds are the only constraints imposed.
• A selective iterative procedure was introduced in order to focus the search on the

most sensitive variables in the first step of the analysis.
• A partial population renovation is implemented in order to avoid a saturation

with the best individuals. Therefore, the mutation step is no longer needed
(Mroginski et al., 2009).

• A penalty function is introduced in order to avoid truss plastification (Fancello
and Pereira, 2003; Thein and Liu, 2012).

2.2 Particular features
Variable initializations. The initial values of the subsequent command variables are
prescribed. The population size (PopSize), the maximum numbers of generations (ngen),
the number of variables (numvars), the percentage of individuals which will not be
renewed ( porpas) and the number of individuals of the elite group (Nelit). To clarify, the
pseudo-code of the GA proposed in this work is showed in Figure 1.

Sensitivity analysis. At the beginning of the evolutionary iterative algorithm a
sensitivity analysis of the involved variables corresponding to each individual is

Figure 1.
Elementary

pseudo-code of
this selective

genetic algorithm
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carried out. The main aim of this study is to set up groups of variables (ngrup)
according to their dependence with the adopted objective function.

The easiest way to perform the sensitivity analysis consists in imposing
the minimum value (or maximum) in almost all variables, except those in which the
analysis is carried out, and evaluate the objective function. This allows the characterization
of the influence of each variable according to its importance with regards to the
adopted objective function. First, each group is analyzed individually in order to avoid
spurious solutions. Then, the whole variables groups are simultaneously considered in
the iterative GA procedure. In seeking the global optimum with classical NGA
algorithm and variables with very low sensitivity is usually observed that the solution
found correspond to the groups most sensitive while those with lower sensitivity adopt
random or spurious values.

This selective optimization technique magnifies the influence of minor importance
variables on the objective function. Thereby, the variables groups with too low
influence on the global objective function can be optimized as well. The recurrent
application of this optimization technique to the remaining variable groups allows the
saturation of the less influent ones up to their corresponding optimum value which,
whereby, are now hardly missed afterwards the global iterative process (i.e. involving
the whole universe of variables) was carried out.

Initial population generation. The initial population is created by a heuristic
algorithm specially designed to satisfy the constraints of the problem regarding the
upper and lower bounds of the variables. It must be underscored that the population
consists in a set of individuals, which in turn are arrays of (numvars, 1) dimension,
formed by the diameters of tubular sections (with 2-mm thickness) corresponding to the
three-dimensional truss structure. Due to the commercial viability of tubular bars,
the diameters are assumed to be discrete variables. The maximum and minimum
imposed boundaries are 50 and 10 mm, respectively.

Multiobjective evaluation. In this work the numerical evaluation of the objective
function was carried out by a FE software based on an open source platform (Scilab)
developed by the authors. In the FE code linear elasticity was assumed and 3D bars
elements (three degree of freedom for each node) were implemented.

The optimization procedure is carried out considering the following objective
functions:

• f1: minimization of the structure weight (kg);
• f2: minimization of displacement (m); and
• f3: minimization of the Euclidean norm of the stress (Kpa).

The multiobjective analysis is performed using a linear combination of f1 and f2,
through the interpolation function of following equation (Belegundu and Chandrupatla,
1999; Mroginski et al., 2009):

F ¼
X

oif i (1)

ωi is the corresponding weights coefficients.
The function f3 is used to compare the multiobjective optimization with the single

optimization approach, using a function with an equivalent physical meaning.
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Besides, in order to avoid truss plastification a penalty function was introduced
(Fancello and Pereira, 2003). According to the actual stress state, the second invariant
of the deviatory stress tensor ( J2) in each bar is obtained and compared with the
elastic-plastic limit (Von Mises material model). Thus, in case of plastification, the
corresponding objective function is increased by a weighted factor.

Selection. A simple roulette selection process is adopted. Thus, the individuals
selection is based directly on the probabilities of each one through a random shot.
In order to reduce the saturation of the population with the most adapted individuals,
the probabilities are obtained using the scaling function of following equation instead
any of those more simple (direct quotient, etc.) commonly employed elsewhere
(Belegundu and Chandrupatla, 1999):

P ¼ Fþ 0:1 Fmax�1:1 Fminð Þ
max 1; 1:1� Fmax�Fminð Þ½ � (2)

F is the objective function obtained from Equation (1), and Fmin and Fmax are its
extreme values.

Cross-over. In this subroutine, a mixed cross-over algorithm is proposed. On the one
hand, a particular crossing process for structural optimization is used for odd
generations, called smart cross-over, since the combination between variables represent
a physical meaning, i.e. the variable array is conveniently classified in diagonals,
pillars, etc. (see Figure 2). The variables groups adoption of the smart crossover
operator are based on subjective criterions derived from researcher’s experience
(or engineer’s). A remarkable aspect is that these groups must not be mistaken with
those obtained in the aforementioned sensibility analysis.

The smart cross-over operator exchanges the entire groups of variables between
two individuals who are crossing; in fact, the main goal is to preserve the invariance of
the group as a whole after the crossing process. In some structures, the assessment of a
single bar impact in the overall structure behavior is too difficult a task whenever it is
not performed regarding the structural component in a complete manner (i.e. bottom
chord, top chord, webs, etc.). Specifically, one feature of the smart cross-over operator is
precisely to grasp the aforesaid overall behavior of each variable group.

On the other hand, a multiple cross-over technique is implemented for pair
generations. Therefore in order to perform the combination between the selected
individuals groups within each generation (see Figure 3) a random binary vector of
dimension numvars with the cross-over positions is created.

Population renewal. If spurious solutions regarding to locals minimum are to be
avoided, some partial renovation technique over the population should be included in
the proposed GA. This technique involves a partial replacement that must not exceed

Group no 3

Group no 1 Group no 2

Figure 2.
Group definition for

smart cross-over
method considered in

odd generations
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30 percent of the original one to prevent the GA becomes a simple random search
algorithm. This technique increases the search field of the GA and removes less
adapted individuals of the evolutionary process. Consequently, the additional step of
mutation is no longer required.

Stopping criterion. For the present multiobjective GA, the stopped criterion is
reached when the 95 percent of the chromosomes (variables) have the same value.
Furthermore, toward reducing the computational cost of the evolutionary process, this
test is performed once every 100 iterations. It is worth to remark that the individuals
resulting from the selection-crossover process define the new population; therefore, its
size remains unchanged. In such a way, this algorithm can be classified as generational
(De Castro and Partridge, 2006).

3. Results
The proposed selective GA was applied to three-dimensional structural optimization
and some numerical outcomes are hereinafter presented. Two examples of 3D bars
structures with known and closed solution are analyzed in order to evaluate the
convergence rate and the estimated error (obtained with the Euclidean norm) of the
proposed SGA.

3.1 Small problem
The first example is a 3D bridge optimization problem. The material properties are:
Young module E¼ 210 MPa, Poisson module v¼ 0.27 and density δ¼ 7,850 Kg/m3.
Also, the geometry, boundary condition and the adopted enumeration of each variable
are presented in Figure 4. Two vertical external forces were considered, P¼ 10 KN.

The controlling variables adopted are: numvars¼ 24, PopSize¼ 50, porpas¼ 80
percent and Nelit¼ 2 percent. The main controlling variable regarding to the total
execution time of the GA is in fact the population size. However, the better adoption of
this parameter (without oversizing the problem) is not a trivial issue. The required
population size (PopSize) depends on many factors, such as the number of variables
considered in each individual, the non-linearity of the objective function as well as the
domain of field variables (Rexhepi et al., 2013).

In the first place, the minimizing problem of the total structural weight is considered.
Unless an additional restriction is imposed, the exact solution for this problem is an
individual composed by the minimum admissible value in each variable, i.e. dmin.
Then, from the sensitivity analysis explained above, three groups of variables arose
and they are presented in Table I. The relative error obtained from the evolutionary
process, compared to the exact solution, is less than 1 percent. Also, it can be observed

Individual A A2 A3

A3

A1

A2A1

B1 B2

B1 B2

B3

B3

B4

B4

B5

B5

1 111 0 0 0

B6

B6

B7

B7

A4

A4

A5

A5

A6

A6

A7 …

…

…

…

…

A7

Individual B

Random binary vector

Individual AB

Individual BA

Figure 3.
Illustration of the
multiple cross-over
technique employed
in this paper
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from Table II that this error is presented in elements 20 and 21, which correspond to the
third group of variable with lower influence in the objective function.

Next, the geometrical solution for the minimum displacement corresponding to the
middle section of the structure is analyzed. Similar to the example above, the exact
solution of this problem is known and it is attained when all variables attain the
maximum admissible value, i.e. dmax. For the case in point, four groups of variables
came up applying the sensitivity analysis explained before (see Table I). Also, the
relative error obtained in this example is less than 2 percent and is presented in bars 2
and 4, corresponding to the fourth group of variables.

The third test involves the minimization of the Euclidean norm of internal stresses.
In contrast to the precedent examples, the exact solution is unknown previously.
Therefore, an intermediate solution is expected.

Following, the multiobjective minimization procedure is carried out through the
combination of the objective functions f1 and f2, in the Equation (1). The impact of the
weight functions on the solution shape, ω1 and ω2 corresponding to the minimum
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Figure 4.
Geometry and bars
identification of the

small structural
optimization problem

Function

f1 (min. weight)
Variable group no. 1 1, 2, 3, 4, 12, 13, 14, 15, 16, 17, 18, 19, 23, 24
Variable group no. 2 5, 6, 7, 8, 9, 10, 11
Variable group no. 3 20, 21, 22

f2 (min. displacement)
Variable group no. 1 7, 8, 9
Variable group no. 2 5, 6, 10, 11, 12, 13, 18, 19
Variable group no. 3 14, 15, 16, 17, 21
Variable group no. 4 1, 2, 3, 4, 20, 22, 23, 25

f3 (min. stress)
Variable group no. 1 5, 6, 7, 8, 9, 10, 11
Variable group no. 2 12, 13, 14, 15, 16, 17, 18, 19, 21
Variable group no. 3 1, 2, 3, 4, 20, 22, 23, 24

Table I.
Variables groups

obtained from
sensitivity analysis
for each objective

function
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weight and minimum displacement of the middle section, respectively, is presented in
Table II. Also, it can be observed that the increase in the weight function ω1 mainly
affects those sensitivity variables related to the weight minimization problem
introducing a bias in the minimum admissible value, dmin.

Similarly, by increasing the weight function ω2, the obtained solution is close to the
one corresponding to the displacement minimization.

Meanwhile, multiobjective analysis with weight functions ω1¼ω2¼ 1, denoted in
this paper as MO[ω1, ω2], tends to the mean solution, which correspond to the
minimization of the Euclidean norm of the stress state (see Table II). Figure 5 shows the
representation of three multiobjective solutions corresponding to MO[1, 10], MO[1, 1]
and MO[10, 1].

Finally, the same sets of optimization problems are carried out without the
sensitivity analysis proposed in this paper. This evolutionary algorithm is known as
NGA. Achieving a relative error tantamount to the one previously obtained with SGA
would entail too high a computational cost as it was clearly settled down in the last two
columns of Table II showing the required iterations of the SGA and the NGA to fulfill
the convergence criterion formerly explained.

3.2 Large problem
The same sets of analysis developed in previous section were carried out for a large
problem of 3D structural optimization. Hence, this second analysis is concerning to a
3D steel tower optimization. The material properties of the steel bars are: E¼ 210 MPa,
v¼ 0.27 and δ¼ 7,850 Kg/m3. The geometry, boundary conditions and the label of each
variable assigned are presented in Figure 6. In this case, four horizontal external forces
were applied on the top nodes of the truss structure, P¼ 10 KN.

Controlling variables adopted are: numvars¼ 80, PopSize¼ 200, porpas¼ 70
percent and Nelit¼ 2 percent.

From the sensitivity analysis, the incidence of each variable is classified in four
groups. Figure 7 shows the spatial distribution of each group regarding to the adopted
objective function.

In first place, the minimizing problem of the total structural weight and the
horizontal displacement of the tower top are considered. Whether non-additional
restrictions are imposed the closed solution of this problems are known. Similar to the
previous example, the relative error is very small and is due to the variables
corresponding to the fourth group.

In Table III, the relative errors as well as the required number of iterations for both,
SGA and NGA proposed in this paper, are presented.

Finally, in Figure 8 the population evolution of the SGA for the displacement
objective function is plotted. Additionally, it can be identified the instant wherein a
partial renewal of the population take place as well as the jump in the objective function
due to the incorporation of a new group of variables (sensitivity analysis).

4. Conclusions
A computational tool, based on generational elitist GA, for multiobjective optimization
of 3D steel structures is presented. The adopted objective functions consist in
minimizing the total structural weight, displacement (on a particular section) and
internal stress distribution. The variables sensitivity analysis put forward in this
approach introduces a significant improvement in the convergence rate of the

431

Selective
genetic

algorithm



4 3 2 1 0
0.

5

4 3 2 1 0
0.

5

4
0.

01

0.
02

0.
03

0.
04

0.
05

3 2 1 0
0.

5

0 –0
.5

0 –0
.5

0 –0
.5

0
2

4
6

(a
)

(b
)

(c
)

8
10

0
2

4
6

8
10

0
2

4
6

8
10

N
o
te
s:

 (
a)

 M
O

[1
,1

0
];

 (
b
) 

M
O

[1
,1

];
 (

c)
 M

O
[1

0
,1

]

Figure 5.
Multiobjective
solutions considering
three different
combinations of
weight functions

432

MMMS
12,2



P
P

80
77

79

78

6875

66
64

71

74

72
73 67

P

63

5262
61

58
60

53 54
48 50

55

36

56

58
57

51

47

46 42 41

35

26 25

15
19

24 10
9

14

2
7 8

3

6
5

4

(m)
(m) 3

2
106

4

2

23
4

30

3140
34

32

27

21 22

12 11
18

13

6
5

4345
4433

37

29
17

1

0

1

2

3

4

5

6

(m)

7

8

9

10

0

16

38

28

76

7069
65

P

49

39
20

Figure 6.
Geometry, boundary
conditions and bars
identification of the

large structural
optimization problem

6

4

6

4

6

4

2

0
0 2 4 6 0 2 4 6 0 2 4 6

group 1

group 2

group 3

group 4

0

2

0

2

(a) (b) (c)

Notes: The 3D structure is colored according to the assigned group obtained from the

sensibility analysis and considering the following objective function:

(a) weight minimization; (b) displacement minimization; (c) stress minimization

Figure 7.
Top vision of the

sensitivity analysis
for the large

structural
optimization problem

Variables (diameters in cm)
Relative error ngen for SGA ngen for NGA

f1 (min. weight) 2.2 654 1,457
f2 (min. displ.) 1.9 691 1,354
f3 (min. stress) 2.5 684 1,524

Table III.
Relative error

obtained with the
proposed SGA and

NGA for all adopted
objective functions
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algorithm. The presented numerical results show the versatility and robustness of the
proposed GA. Its application to the 3D metallic structures design could represent a
good alternative at preliminary project stages.
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