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1 Introduction

In recent years, one focus of study in the field of fractional calculus was the generalization of integration and
differentiation operators. In many generalizations of theintegral operators appear special functions such as Gauss
hypergeometric function, Mittag-Leffler type functions, Wright function, Meijer’s G-function and Fox’s H-function in
the kernel of these operators. A very interesting work that meets many of these results isOperators of fractional
integration and their applicationsby Srivastava and Saxena [1]. It is not mentioned in this work, the integral operator
introduced by Prabhakar [2], which contains in its kernel a Mittag-Leffler type function of three parameters. In 2004,
Kilbas et. al. [3] have studied this operator noting that generalizes the Riemann-Liouville fractional integral and
proposed its left inverse operator, as a generalization of the Riemann-Liouville fractional derivative. In 2014, Garra et. al.
[4] turned to the study of that operator using it to construct a fractional differential operator that generalizes the Hilfer
fractional derivative.

Moreover, a crucial role in the field of fractional calculus is the Euler’s Gamma function, which generalizes the
factorial function and appears in the definitions of integral operators of non-integer order and at the definitions of special
functions. Several generalizations of this function have been studied (see e.g. [5], [6]). One of these generalizations was
introduced in 2007 by Diaz and Pariguan [7], namely the k-Gamma function. Since the k-Gamma function was introduced,
many authors have presented extensions of some of the so-called special functions, such as the k-Mittag-Leffler function
[8], k-Wright function [10], and k-Bessel functions [9,11]. In addition, also they have introduced generalizations of the
classical fractional operators, (see [12], [13], [14], [15], [16], [17]). In this paper, we introduces a new generalization of
the following integral operator due to Prabhakar:

(Eγ
ρ ,µ,ω;a+ϕ)(x) =

∫ x

a
(x− t)µ−1Eγ

ρ ,µ [ω(x− t)ρ ]ϕ(t)dt (x> a). (1)
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whereEγ
ρ ,µ [ω(x− t)ρ ], the Mittag-Leffler function defined in [2], will be replaced by the k-Mittag-Leffler function

defined in [8], and given by

Eγ
k,α ,β (z) =

∞

∑
n=0

(γ)n,k

Γk(αn+β )
zn

n!
(2)

wherek∈R+; α,β ,γ ∈C; Re(α)> 0,Re(β )> 0; Γk(x) it is the k-Gamma function given by (4) and(γ)n,k =
Γk(γ+nk)

Γk(γ)
it is the Pochhammer k-symbol.

In the following, we will highlight some points needed for the sequel.
In 2012 Mubeen and Habbibulah [15] introduced the k-Riemann-Liouville fractional integralgiven by

Definition 1. Let α ∈ R
+ and n∈ N such that n−1< α < n, f ∈ L1([0,∞)). Then the k-Riemann-Liouville fractional

integral of f is

Iα
k f (t) =

1
kΓk(α)

∫ t

0
(t − τ)

α
k −1 f (τ)dτ =

t
α
k −1

kΓk(α)
∗ f (t), t > 0, (3)

where

Γk(α) =

∫ ∞

0
tα−1e−

tk
k dt, k> 0. (4)

is the k-Gamma function introduced in [7] and whose relationship with the classical Gamma function is

Γk(α) = k
α
k −1Γ

(α
k

)

. (5)

Since the k-Gamma function is such thatΓk(α)→ Γ (α) whenk→ 1, it follows thatIα
k → Iα .

The k-integral (3) also satisfies the semigroup property

Proposition 1. Let α,β ∈R
+, f ∈ L1([0,∞)) and k> 0, then

Iα
k Iβ

k f (t) = Iα+β
k f (t) = Iβ

k Iα
k f (t). (6)

For the proof, we remit to [15] formula (10) p. 91.

The left inverse operator of (3) was defined and studied by the author in [13], and it is given by the following

Definition 2. Let k,α ∈R+ and n∈N such that n= [α
k ]+1, f ∈ L1([0,∞)) and Ink−α

k f (t) ∈Wn,1[0,∞); the k-Riemann-
Liouville fractional derivative is given by

kD
α
RL f (t) =

(
d
dt

)n

knInk−α
k f (t), (7)

where Wn,1[a,b] denotes the Sobolev space Wn,1[a,b] = { f ∈ L1[a,b] : f (n) ∈ L1[a,b]}.

Remark. If k= 1 (7) coincides with the classical Riemann-Liouville fractional derivative.

Remark. In Definitions 1.1 and 1.2 is to possible considerα ∈ C (ℜ(α) > 0). Therefore, in the Definition 1.2 must be

n=
[

ℜ(α)
k

]

+1.

2 Results

Definition 3.(k-Prabhakar integral) Let α,β ,ω ,γ,∈ C, k∈ R+; ℜ(α) > 0; ℜ(β ) > 0 andϕ ∈ L1([0,b]), (0< x <
b≤ ∞). The k-Prabhakar integral operator is defined as

(kP
γ
α ,β ,ωϕ)(x) =

∫ x

0

(x− t)
β
k −1

k
Eγ

k,α ,β [ω(x− t)
α
k ]ϕ(t)dt, (x> 0) (8)

=
(

kE
γ
α ,β ,ω ∗ f

)

(x), (9)

where

kE
γ
α ,β ,ω(t) =

{

t
β
k −1

k Eγ
k,α ,β (ωt

α
k ), t > 0;

0, t ≤ 0.
(10)
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Remark. Note here that forγ = 0 we have

(kP
0
α ,β ,ωϕ)(t) = (Iβ

k ϕ)(t) (11)

i.e. the operator (8) generalizes the k-Riemann-Liouville fractional integral defined by (3).

It is interesting to study the boundedness of the k-Prabhakar integral on different spaces, namely, on the space of
Lebesgue integrable functions and on the space of continuous functions on a closed interval. Indeed, we have the following
two Propositions.

Proposition 2. The k-Prabhakar integral is bounded on L1([0,b]), (0< x≤ b< ∞).
Let α,β ,ω ,γ,∈ C, k∈ R+; ℜ(α)> 0; ℜ(β )> 0 andϕ ∈ L1([0,b]) hence

‖(kP
γ
α ,β ,ωϕ)(x)‖1 ≤ B‖ϕ‖1, (12)

where

B=
b

ℜ
(

β
k

)

k

∞

∑
n=0

|(γ)n,k(ωbℜ(α
k ))n|

[

nℜ
(α

k

)
+ℜ

(
β
k

)]

|Γk(αn+β )|n!
. (13)

Proof.
First, we will prove that the series in (13) it is convergent.
Denoting bycn the nth term of the series, and using (5) and the following relations

(γ)n,k = kn
(γ

k

)

n
, (14)

and

Γ (z+ρ)
Γ (z+ µ)

= zρ−µ
[

1+
1
2z

(ρ − µ)(ρ + µ −1)+O(z−2)

]

(15)

for |z| → ∞, |arg(z)| ≤ π − ε, |arg(z+ρ | ≤ π − ε, 0< ε < π ;
we finally obtain

∣
∣
∣
∣

cn+1

cn

∣
∣
∣
∣
= k−

α
k
|n+ γ/k|

n+1

∣
∣
∣
∣
∣
∣

Γ
(

α
k n+ β

k

)

Γ
(

α
k n+ β

k + α
k

)

∣
∣
∣
∣
∣
∣

×

[

nℜ(α
k )+ℜ(β

k )
]

[

(n+1)ℜ(α
k )+ℜ(β

k )
] |ω |bℜ( α

k ) ∼
|ω |bℜ( α

k )

(|α
k |n)

ℜ( α
k )

→ 0 (n→ ∞)

which means that the right-hand side of (13) is convergent and thus B is finite.
Now, we will prove (12). We considerϕ ∈ L1([0,b]) then by using (8), interchanging the order of integration and

takingτ = x− t result

‖(kP
γ
α ,β ,ωϕ)(x)‖1 =

∫ b

0

1
k

∣
∣
∣
∣

∫ x

0
(x− t)

β
k −1Eγ

k,α ,β [ω(x− t)
α
k ]ϕ(t)dt

∣
∣
∣
∣
dx

≤
1
k

∫ b

0

[∫ b

t
(x− t)ℜ( β

k )−1
∣
∣
∣E

γ
k,α ,β [ω(x− t)

α
k ]
∣
∣
∣dx

]

|ϕ(t)|dt

=
1
k

∫ b

0

[∫ b−t

0
τℜ(

β
k )−1

∣
∣
∣E

γ
k,α ,β [ωτ

α
k ]
∣
∣
∣dτ
]

|ϕ(t)|dt

≤

∫ b

0







1
k

∫ b

0
τℜ(

β
k )−1

∣
∣
∣E

γ
k,α ,β [ωτ

α
k ]
∣
∣
∣dτ

︸ ︷︷ ︸

Ω






|ϕ(t)|dt. (16)
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We note that

Ω ≤
1
k

∞

∑
n=0

|(γ)n,k||ω |n

|Γk(αn+β )|n!

∫ b

0
τℜ( α

k )n+ℜ(
β
k )−1dτ = B. (17)

Then, from (16) and (17) we have (12).

Proposition 3. The k-Prabhakar integral is bounded on C([0,x]), (0< x≤ b< ∞). Letα,β ,ω ,γ,∈ C, k∈R+; ℜ(α)>
0; ℜ(β )> 0 andϕ ∈C([0,b]) hence

‖(kP
γ
α ,β ,ωϕ)(x)‖C ≤ B‖ϕ‖C, (18)

where
‖ϕ‖C = max{|ϕ | : 0≤ x≤ b} (19)

and B is given by (13).

Proof.
Let usϕ ∈C([0,b]) andx∈ [0,b], and taking into account (19) we have

|(kP
γ
α ,β ,ωϕ)(x)| ≤

∫ x

0
|(x− t)

β
k −1Eγ

k,α ,β [ω(x− t)
α
k ]||ϕ(t)|dt

≤ ‖ϕ(t)‖C

∫ x

0
(x− t)ℜ( β

k )−1|Eγ
k,α ,β [ω(x− t)

α
k ]|dt. (20)

Repeating what was done in (16) and (17) and considering that 0≤ x≤ b, the integral in (20) is less than or equal to
B. This completes the proof of (18).

We now calculate the operator applied to certain functions such as potential function and k-Mittag-Leffler function.
To this end, first we demonstrate the following lemmas.

Lemma 1. Let α,β ,ω ,γ,∈ C, k∈R
+; ℜ(α)> 0; ℜ(β )> 0. Then

Iα
k [(t − τ)

β
k −1Eγ

k,ρ ,β (ω(t − τ)
ρ
k )] = (t − τ)

α+β
k −1Eγ

k,ρ ,β+α(ω(t − τ)
ρ
k ). (21)

Proof. Starting on the left-hand side, using (3) and (8), the uniform convergence of the serie (2) and taking into account
([15], f. 12) we have (21).

Iα
k [(t − τ)

β
k −1Eγ

k,ρ ,β (ω(t − τ)
ρ
k )] =

1
kΓk(α)

∫ t

0
(t − τ)

α
k −1(t − τ)

β
k −1Eγ

k,ρ ,β (ω(t − τ)
ρ
k )dτ (22)

=
∞

∑
n=0

(γ)n,kωn

kΓk(ρn+β )n!
1

Γk(α)

∫ t

0
(t − τ)

ρn+β
k −1(t − τ)

α
k dτ (23)

=
∞

∑
n=0

(γ)n,kωn

n!
1

Γk(α)
Iρn+β
k

[

(t − τ)
α
k

]

(24)

= (t − τ)
β+α

k −1Eγ
k,ρ ,β+α(ω(t − τ)

ρ
k ). (25)

Lemma 2. Let α,β ,ω ,γ,∈ C, k∈R+; ℜ(α)> 0; ℜ(β )> 0 andϕ ∈ L1(R+
0 ) and

∣
∣
∣ωk(ks)−

ρ
k

∣
∣
∣< 1. Then

L {(kP
γ
ρ ,β ,ωϕ)(x)}(s) = L {kE

γ
ρ ,β ,ω(t)}(s)L {ϕ}(s) (26)

= (ks)−
β
k

(

1−ωk(ks)−
ρ
k

)− γ
k
L {ϕ}(s). (27)

Proof. It is sufficient to calculate the Laplace transform of the kernel (10). For this purpose, taking into account (5) and
the generalized binomial theorem, we have

∞

∑
n=0

(γ)n,kωn

n!
= (1− kω)−

γ
k , |kω |< 1. (28)
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L {kE
γ
α ,β ,ω(t)}(s) =

1
k

∫ ∞

0
e−stt

β
k −1Eγ

k,α ,β (ωt
α
k )dt (29)

=
1
k

∞

∑
n=0

(γ)n,kωn

Γk(αn+β )n!

∫ ∞

0
e−stt

α
k n+ β

k −1dt

=
1
k

∞

∑
n=0

(γ)n,kωn

Γk(αn+β )n!

Γ
(

αn+β
k

)

s
αn+β

k

=
1
k

∞

∑
n=0

(γ)n,kωn

n!k
αn+β

k −1s
αn+β

k

=
1

(ks)
β
k

∞

∑
n=0

(γ)n,k

n!

(

ω
(ks)

α
k

)n

= (ks)−
β
k

(

1−ωk(ks)−
α
k

)− γ
k
,

∣
∣
∣
∣
∣

kω
(ks)

α
k

∣
∣
∣
∣
∣
< 1. (30)

Proposition 4. Let ρ ,β ,ω ,γ ∈ C, k∈ R+ andℜ(ρ)> 0,ℜ(β )> 0,ℜ(α)> 0. Then

(kP
γ
ρ ,β ,ω)[σ

α
k −1](t) = Γk(α)t

α+β
k −1Eγ

k,ρ ,β+α(ωt
ρ
k ). (31)

Proof.
Taking into account ([15], f.11) we have

(kP
γ
k,ρ ,β ,ω)[σ

α
k −1](t) =

∫ t

0

(t −σ)
β
k −1

k
Eγ

k,ρ ,β (ω(t −σ)
ρ
k )σ

α
k −1dσ

=

∫ t

0

1
k

∞

∑
n=0

(γ)n,kωn(t −σ)
ρn+β

k −1σ
α
k −1

Γk(ρn+β )n!
dσ

=
∞

∑
n=0

(γ)n,kωn

n!
1

kΓk(ρn+β )

∫ t

0
(t −σ)

ρn+β
k −1σ

α
k −1dσ

=
∞

∑
n=0

(γ)n,kωn

n!
Iρn+β
k

[

σ
α
k −1
]

(t)

=
∞

∑
n=0

(γ)n,kωn

n!
Γk(α)

Γk(ρn+β +α)
t

ρn+β+α
k −1

= Γk(α)t
α+β

k −1Eγ
k,ρ ,α+β (ωt

ρ
k ).

Proposition 5. Let ρ ,β ,µ ,δ ,ω ,γ ∈C, k∈ R+; ℜ(ρ)> 0,ℜ(β )> 0 and

∣
∣
∣
∣

kω
(ks)

α
k

∣
∣
∣
∣
< 1. Then

(kP
γ
ρ ,β ,ω)

[

σ
µ
k −1

k
Eδ

k,ρ ,µ(ω(x−σ)
ρ
k )

]

(t) =
t

µ+β
k −1

k
Eδ+γ

k,ρ ,µ+β (ω(x− t)
ρ
k ). (32)

Proof.
The left hand side of (32), according to (8) can be written as

(

kE
γ
ρ ,β ,ω ∗ kE

δ
ρ ,µ,ω

)

(t). (33)

Now, taking Laplace transform and applying the convolutiontheorem for the Laplace transform andLemma 2

L {
(

kE
γ
ρ ,β ,ω ∗ kE

δ
ρ ,µ,ω

)

(t)}(s) = L {kE
γ
ρ ,β ,ω(t)}(s)L {kE

δ
ρ ,µ,ω (t)}(s)

= (ks)−
β+µ

k

(

1−ωk(ks)−
ρ
k

)−
γ+δ

k
.

Then because the inverse Laplace transform, the results canbe achieved.
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2.1 Compositions of k-Fractional Calculus Operators with the k-Prabhakar Integral Operator

We now consider composition with the k-Riemann-Liouville fractional integral.

Proposition 6. Let α ∈ C,(ℜ(α)), and ρ ,β ,ω ,γ ∈ C,(ℜ(ρ) > 0,ℜ(β ) > 0). Then relation for any function
f ∈ L1([0,b]),(0< x< b≤ ∞) hold

Iα
k (kP

γ
ρ ,β ,ω f (t)) = kP

γ
ρ ,β+α ,ω f (t) = kP

γ
ρ ,β ,ω(I

α
k f (t)) (34)

Proof.
We will start proving the first equality in (34),

Iα
k (kP

γ
ρ ,β ,ω f (t)) =

1
kΓk(α)

∫ t

0
(t − x)

α
k −1

kP
γ
ρ ,β ,ω f (x)dx

=
1

kΓk(α)

∫ t

0
(t − x)

α
k −1

∫ x

0

(x− τ)
β
k −1

k
Eγ

k,ρ ,β [ω(x− τ)
ρ
k ] f (τ)dτdx.

By inverting the order of integration,

1
k2Γk(α)

∫ t

0

∫ t

τ
(x− τ)

β
k −1(t − x)

α
k −1Eγ

k,ρ ,β [ω(x− τ)
ρ
k ]dxdτ

=
1

k2Γk(α)

∫ t

0
f (τ)

∫ t

τ
(x− τ)

β
k −1(t − x)

α
k −1Eγ

k,ρ ,β [ω(x− τ)
ρ
k ]dxdτ (35)

making the change of variablex− τ = ξ we have

1
k2Γk(α)

∫ t

0
f (τ)

∫ t−τ

0
(t − τ − ξ )

α
k −1ξ

β
k −1Eγ

k,ρ ,β [ωξ
ρ
k ]dξ dτ

=
1
k

∫ t

0
Iα
k

[

(t − τ)
β
k −1Eγ

k,ρ ,β [ω(t − τ)
ρ
k ]
]

f (τ)dτ (36)

and by (21) finally obtains

1
k

∫ t

0
(t − τ)

β+α
k −1Eγ

k,ρ ,β+α [ω(t − τ)
ρ
k ] f (τ)dτ = kPρ ,β+α ,ω f (t). (37)

To prove the second equality, with an analogous procedure, takingσ = τ − ξ , we have

kP
γ
ρ ,β ,ω(I

α
k f (t)) =

1
kΓk(α)

∫ t

0

(

kPρ ,β ,ω(σ
α
k −1)

)

(t − ξ ) f (ξ )dξ .

Taking into account (31) we get

1
kΓk(α)

∫ t

0

(

kPρ ,β ,ω(σ
α
k −1)

)

(t − ξ ) f (ξ )dξ =
Γk(α)

kΓk(α)

∫ t

0
(t − ξ )

β+α
k −1Eγ

k,ρ ,β+α [ω(t − ξ )
ρ
k ] f (ξ )dξ

= kP
γ
ρ ,β+α f (t). (38)

Then, from (37) and (38), (34) is obtained.
Now we study the composition with the k-fractional differential operatorkDα

RL.

Proposition 7. Letα,ρ ,β ,γ,ω ∈C; k∈R+, ℜ(α)> 0,ℜ(ρ)> 0,ℜ(β )> 0; then for f∈ L1([0,b]) and0< x< b≤ ∞
hold

kD
α
RL(kP

γ
ρ ,β ,ω f (t)) = kP

γ
ρ ,β−α ,ω f (t). (39)
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Proof.
Let us supposen=

[α
k

]
+1, then by (7) and (34) we have:

kD
α
RL(kP

γ
ρ ,β ,ω f (t)) =

(
d
dt

)n

knInk−α
k kP

γ
ρ ,β ,ω f (t)

= kn
(

d
dt

)n

kP
γ
ρ ,β+nk−α ,ω f (t)

= kn−1
(

d
dt

)n∫ t

0
(t − x)

β+nk−α
k −1Eγ

k,ρ ,β+nk−α(ω(t − x)
α
k ) f (x)dx

,

=
1
k

∫ t

0
(t − x)

β−α
k −1Eγ

k,ρ ,β−α(ω(t − x)
α
k ) f (x)dx= kP

γ
ρ ,β−α ,ω f (t). (40)

Another important property of the operator (8) is the semigroup property.

Proposition 8. Let k∈ R+ and ρ ,β ,γ,ν,δ ,ω ∈ C, ℜ(ρ) > 0,ℜ(β ) > 0,ℜ(ν) > 0; then for anyϕ ∈ L1([0,b]) and
0< x< b≤ ∞ we have

kP
γ
ρ ,β ,ω(kP

δ
ρ ,ν,ω ϕ)(t) = (kP

γ+δ
ρ ,β+ν,ωϕ)(t) = kP

δ
ρ ,ν,ω(kP

γ
ρ ,β ,ωϕ)(t). (41)

As particular case

kP
γ
ρ ,β ,ω(kP

−γ
ρ ,ν,ωϕ)(t) = Iβ+ν

k ϕ(t). (42)

Proof.
Interchanging the order of integration, takingτ = µ − x, and finally the formula (32) is

kP
γ
ρ ,β ,ω(kP

δ
ρ ,ν,ω ϕ)(t) =

1
k

∫ t

0
(t − x)

β+ν
k −1Eγ+δ

k,ρ ,β+ν(ω(t − x)
ρ
k )ϕ(x)dx

= (kP
γ+δ
ρ ,β+ν,ωϕ)(t).

2.2 The Inverse Operator

We here construct the left inverse operator. To do that, we propose the following Volterra integral equation of the first
kind.

(kP
γ
ρ ,β ,ωϕ)(x) = f (x), ϕ(x) ∈ L1([0,∞)). (43)

Taking into account (12) we have thatf ∈ L1([0,∞)), then givenν ∈ C,ℜ(ν) > 0, by composition with the operator

kP
−γ
ρ ,ν,ω and by the property (42) we have,

kP
−γ
ρ ,ν,ω (kP

γ
ρ ,β ,ωϕ)(x) = kP

−γ
ρ ,ν,ω f (x) (44)

Iβ+ν
k ϕ(x) = kP

−γ
ρ ,ν,ω f (x). (45)

Sinceℜ(β +ν)> 0 andf ∈ L1([0,∞)), then by Definition 6 of [13], we can apply the k-Riemann-Liouville fractional
derivative (7) of orderβ +ν, and we obtain

ϕ(x) = kD
β+ν
RL kP

−γ
ρ ,ν,ω f (x), (46)

which is the solution of (43).
In conclusion, the left inverse operator ofkP

γ
ρ ,β ,ω is kD

β+ν
RL kP

−γ
ρ ,ν,ω , i.e.

[

kP
γ
ρ ,β ,ω

]−1
= kD

β+ν
RL kP

−γ
ρ ,ν,ω . (47)
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Remark. Note here that puttingk= 1, we have that (47) coincides with the inversion formula given in Theorem 9 of [3].

To obtain an equivalent expression to (47), we introduce the following

Definition 4.(The k-Prabhakar derivative) Let k∈ R+, ρ ,β ,γ,ω ∈ C, ℜ(ρ) > 0,ℜ(β ) > 0, m=
[

β
k

]

+1 and f ∈

L1([0,b]). We define the k-Prabhakar derivative by

kD
γ
ρ ,β ,ω f (x) =

(
d
dx

)m

km
kP

−γ
ρ ,mk−β ,ω f (x). (48)

We note that (47) and (48) are equivalent. Indeed, proceeding analogously to what was done in [4], taking

ν ∈C, ℜ(ν)> 0, p=
[

ℜ(β )+ℜ(ν)
k

]

+1, by (II.9) of [13] we have

kD
γ
ρ ,β ,ω f (x) =

(
d
dx

)m

km
kP

−γ
ρ ,mk−β ,ω f (x)

=

(
d
dx

)m

km
(

d
dx

)p−m

kp−mI (p−m)k
k kP

−γ
ρ ,mk−β ,ω f (x)

=

(
d
dx

)p

kp
kP

−γ
ρ ,mk−β+pk−mk,ω f (x)

=

(
d
dx

)p

kp
kP

−γ
ρ ,pk−β ,ω f (x)

=

(
d
dx

)p

kp
kP

0
ρ ,pk−(β+ν),ωkP

−γ
ρ ,ν,ω f (x), ν ∈C,ℜ(ν) > 0

=

(
d
dx

)p

kpI pk−(β+ν)
k kP

−γ
ρ ,ν,ω f (x)

= kD
β+ν
RL kP

−γ
ρ ,ν,ω f (x).

Therefore, (48) is the left inverse operator of (8).

Remark. If γ = 0 in (48) then the k-Prabhakar derivative coincides with the k-Riemann-Liouville derivative given in [13].
Indeed,

kD
0
ρ ,β ,ω f (x) =

(
d
dx

)m

km
kP

0
ρ ,mk−β ,ω f (x) (49)

=

(
d
dx

)m

kmImk−β
k f (x) (50)

= kD
β
RL f (x). (51)

3 A Generalization of the Free Electron Laser Equation

In this section we consider an equation that generalizes formula (1.1) of [14], in the case a = 0, and that contains, as a
particular case, the free electron laser equation.

Theorem 1. Given the following Cauchy problem
{

kD
γ
ρ ,β ,ωy(x) = λ kPδ

ρ ,ν,ωy(x)+ f (x), f ∈ L1[0,∞);
(

kP
−γ
ρ ,k−β ,ωy

)

(0) = c, c≥ 0.
(52)

where[β
k ]+1= m= 1, ω , λ ∈ C, ρ > 0,ν > 0,γ ≥ 0,δ ≥ 0, we have that the solution is

y(x) =
∞

∑
n=0

λ n
kP

(δ+γ)n+γ
ρ ,(ν+β )n+β ,ω f (x)+ c

∞

∑
n=0

λ nx
(ν+β)n+β−k

k −1E(δ+γ)n+γ
k,ρ ,(ν+β )n+β−k

(

ωx
ρ
k

)

. (53)
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To prove the theorem the following lemma is required.

Lemma 3. The Laplace transform of the k-Prabhakar derivative for thecase[β
k ]+1= m= 1, is

L {kD
γ
ρ ,β ,ωy(x)} = (ks)−

β
k

(

1−ωk(ks)−
ρ
k

) γ
k
L {y(x)}(s)− k

(

kP
−γ
ρ ,k−β ,ωy

)

(0) (54)

with
∣
∣
∣ωk(ks)−

ρ
k

∣
∣
∣< 1.

Proof.
It is sufficient to calculate the Laplace transform of (48). To do that, we use the Laplace transform of the derivative

of orderm= 1 and Lemma 2.

Proof. Applying the Laplace transform to both sides of (52)






(ks)
β+ν

k

(

1−ωk(ks)−
ρ
k

) γ+δ
k

−λ

(ks)
ν
k

(

1−ωk(ks)−
ρ
k

) δ
k







Y(s) = F(s)+ ck, (55)

Y(s) =







(ks)
ν
k

(

1−ωk(ks)−
ρ
k

) δ
k

(ks)
β+ν

k

(

1−ωk(ks)−
ρ
k

) γ+δ
k

−λ







F(s), (56)

+ck







(ks)
ν
k

(

1−ωk(ks)−
ρ
k

) δ
k

(ks)
β+ν

k

(

1−ωk(ks)−
ρ
k

) γ+δ
k

−λ






, (57)

Y(s) =







(ks)
−β
k

(

1−ωk(ks)−
ρ
k

)− γ
k

1−λ (ks)−
β+ν

k

(

1−ωk(ks)−
ρ
k

)−
γ+δ

k







F(s), (58)

+ck







(ks)
−β
k

(

1−ωk(ks)−
ρ
k

)− γ
k

1−λ (ks)−
β+ν

k

(

1−ωk(ks)−
ρ
k

)−
γ+δ

k






. (59)

Taking

∣
∣
∣
∣
∣
λ (ks)−

β+ν
k

(

1−ωk(ks)−
ρ
k

)− γ+δ
k

∣
∣
∣
∣
∣
< 1, we have

Y(s) =
∞

∑
n=0

λ n(ks)−
(ν+β)n+β

k

(

1−ωk(ks)−
ρ
k

)−
(γ+δ )n+γ

k
F(s), (60)

+c
∞

∑
n=0

λ n(ks)−
(ν+β)n+β−k

k

(

1−ωk(ks)−
ρ
k

)−
(γ+δ )n+γ

k
. (61)

Finally, by the inverse Laplace transform, we have the desired result.

Remark. We note that ifk= 1,γ = 0,ρ = β = 1,δ = ν = 2, f (x) = 0,ω = ir,λ =−iπ p,(r, p∈R) (52) is

d
dx

y(x) =−iωπ
∫ x

0
(x− t)eir (x−t)y(t)dt, y(0) = 1. (62)

which is the free electron laser equation whenx∈ (0,1], and its solution is given in term of the k-Mittag-Leffler function

E2n
1,1,3n(irx)
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4 Conclusion

Fractional differential operators introduced represent an interesting generalization of the Riemann-Liouville operators
from the point of view of k-Fractional Calculus generated from the k-Gamma function and the Pochhammer k-symbol.
These operators may be useful from a physical point of view considering the origin of these generalizations of the Gamma
function and Pochhammer’s symbol set by Diaz and Pariguan. Moreover, also allows us to give a new generalization of a
Cauchy problem associated with the free electron laser equation.
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