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1. Introduction

The diffusion-wave equation has been studied by many authors in the fractional cal-
culus context since it was observed that it could interpolate between heat and waves
diffusion processes. Pioneering work on this type of equation may be mentioned:
Fujita,[1] Nigmatullin,[2] Wyss,[3] Schnaider and Wyss [4] and Mainardi.[5] Fundamen-
tally, according author’s knowledge, the generalizations of the heat and wave equations
have been studied in which the time derivative has been replaced by a fractional deriva-
tive of real order following Riemann-Liouville definitions and Caputo definition,[6,7] or
the Hilfer definition, which contains as a particular case both.[8,9] Also one-dimensional
generalizations have been studied in which the ordinary derivative in the space variable
has been replaced by the Riesz derivative (see, e.g. [10]). The n-dimensional generaliza-
tions have been proposed considering fractional power of the Laplace operator on the
space variable.[11] Other n-dimensional generalization, where the Laplacian operator was
replaced by another of elliptic type,[12,13] were also proposed.

On the other hand, in 2003, Nonlaopon and Kananthai [14] proposed and studied an -
dimensional generalization (but not in the fractional calculus context) of the heat equation
in which the Laplacian operator was replaced by the ultra-hyperbolic operator. Following
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the same idea, Sansanit and Kananthai [15] proposed a generalization of the wave equation.
Motivated by works mentioned in the previous paragraphs the main objective of this paper
is to propose and to solve a Cauchy problem, that contains, as particular case, the equations
studied in [14,15]. For this purpose, we replace the ordinary time derivative by a fractional
derivative of order o (1 < @ < 2) and type r (0 < r < 1) in the Hilfer sense and maintain
the ultra-hyperbolic operator in the space variable. The objective of using the Hilfer deriva-
tive is to include two Cauchy problems that could arise separately and where the ordinary
time derivative is replaced by Riemann-Liouville and by Caputo fractional derivatives.
To solve the equation, we follow the technique developed by Yakubovich and Luchko , [16]
which consists in applying Laplace and Fourier transform together with the Mellin trans-
form. This technique has proven a powerful tool for solving fractional partial differential
equations, as seen for example in [17-20].

The paper is organized as follows. Section 2 provides the definitions of differential and
integral operators of non-integer order, Mittag-Leftler function, the Laplace transform,
the Fourier transform and Mellin transform. In Section 3 the diffusion-wave equation is
solved and inverse Fourier transform of a Mittag—Leffler-type function which contains in
its argument a positive-definite quadratic form is calculated. Then several special cases are
analysed.

2. Preliminary results
2.1. Mittag-Leffler function

It is known the distinguished role played by the Mittag—Leftler function in solving differen-
tial equations of non-integer order. This function is that a generalization of the exponential
function was introduced by the Swedish Mathematician G. Mittag-Leftler in 1903 and is
given by

o z”
Ey(z) = ; m, a,z€ C, N(a) > 0. (21)

In 1905, Wiman studied the following generalization to two parameters of (2.1) :

> z" , ,
Eap(z) = g Tan ¥ B a,B,z€C, Ra) >0, RB) > 0. (2.2)

The Mittag-LefHler function has been studied by many authors who have proposed and
studied various generalizations and applications. A very interesting work that meets many
results about this function is due to Haubold et al .[21]

2.2. Fox’s H-function.

The Fox’s H-function is another of the so-called special functions of the fractional calculus
and contains as particular case the Mittag-Leffler function. The H-function was intro-
duced by Fox [22] as generalizations of the Meijer function. Here we adopt the definition
and properties mentioned in [23] with minimal modifications regarding notation.
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The H-function is defined by means of a Mellin-Barnes-type integral in the following
manner :

(al’Al) (aP’AP) — gmn <Z (aP’AP)>
(bl)Bl) -»(bg, By) (bg> By)
_ ! ®(s)z ds, (2.3)

T
where the integrand is

m 2 L6+ Bis)IT)_ I'(1 — a — Ags)
nt_ n+1F(ak+Ak5)Hq 1 D(1 = bj — Bjs)

O() = (2.4)

where i = (—=1)1/2,z 4 0,and z~° = exp[—s{ln |z| + iargz}], where In |z| represents the
natural logarithm of |z| and arg z is not necessarily the principal argument.

In (2.4), an empty product is always interpreted as unity; m,n,p,q € Ny, with
0<n<pl<m=<gA,B eR Y, a,bjeRorCk=1,....,p;j=1,...,q.

The contour C starting at the point p — ico and going to p + ico where p € R such that
all the poles of I'(bj + Bjs) (j = 1,...,m), are separated from those of I'(1 — ax — Ags)
(k=1,...,n).

The integral is convergent in any of the following cases :

(1) C>0,|argz| < %nCandz;ﬁ 0;
(2) C=0,pD+N(E) < —l,argz=0andz # 0

where
C= ZA—ZA+ZB— ZB
j=n+1 j=m+1
q p
D=7) Bi—) 4
j=1 j=1
and

q p

E=ij—2aj+‘t%.
j:l j:l

A more detailed study about the H-function can be seen at [23]. We only mentioned some
properties that will be used in this paper.

2.2.1. Properties of H-function.

z (ap’Ap)) _ Hnm(

(1 — by, By) )
) (2.5)
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mn (ap)Ap) mn (ap, CAp) 4
. ( (bq’Bq)> M <Z (bq)CBq)) ceR, (26)
p pm;n (ap, Ap) m,n (ap + pAp, Ap)
@My ( (bq,Bq)> Hy, ( (by —I—qu,Bq)) peC. (2.7)

2.3. Brief review of fractional calculus
In this section, we make a brief review of definitions about fractional calculus and integral

transforms to be used in this work.

Definition 2.1 (Riemann-Liouville integral): Let fe Ll o @ U] where
—00 < a <t < b < oco. The Riemann-Liouville integral of order v is defined as

1 t
I'f(t) == m/ (t—10)""f(r)de = (fxj) (), v>0. (2.8)

where j,(t) = t"/T"(v), t > 0.
When v = 0, is defined

I°f(H) = f(1)

Definition 2.2 (Riemann-Liouville derivative): Let v € R such that n—1 < v < n,
neN;fe L'a, b] and f * ju—, € W™ [a, b]; where —o0o < a <t < b < 0o and

n

w™la,b] = {f € L'a,b] : j— 5 Ll[a,b]}.

The Riemann-Liouville derivative of order v is defined by

d"
an” (), ifn—1<v<mn

dr
dr?

R—LDVf(t) — (2.9)

—f(), ifv=n.

Definition 2.3 (Caputo derivative): Let v € R such that n—1<v <n, neN, and
f € AC"[a, b]. The Caputo derivative of order v is given by

dt”f(t) ifn—1<v<mn

—f(), ifv=n.

DUf(t) = (2.10)

dr
de"

Where AC"[a,b] = {f : [a,b] = R: (i‘i;l—:llf(x) € ACla, b]}, and ACla, b] is the space of
absolutely continuous functions.
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Definition 2.4 (Hilfer derivative): Leta € Rsuchthatn — 1 <a <n,n € Nyand B € R
such  that 0<pB<1; fe L'[a,b] and f*ja-gyn-a) € AC'[a,b]  where
—00 < a < t < b < oco. The Hilfer derivative of order o and type p of fis given by

Da’ﬂf(t) — (Iﬂ(”—a)%(l(l—ﬂ)(n—a)f)) (). (2.11)

Remark 1: In this paper we take a =0 for lower limit at the Riemann-Liouville fractional
integral (2.8).

Remark 2: We note that Definition 2.4 contains as particular cases Definitions 2.2 and 2.3.
Indeed:

o If B =0, then
D*Of(t) = (%(1%#)) (t) = =D f(b). (2.12)

e If 8 =1, then
D*'f(1) = (I”‘“%f) (1) = “Df (). (2.13)

o Ifa = n, then
D"Pf(t) = %f(t). (2.14)

Definition 2.5 (Laplace transform): Let f : RT™ — R an exponential order and piecewise
continuous function, then the Laplace transform of f is

LIFB}(s) = F(s) = /0 e (1) dt. (2.15)

The integral exist for Re(s) > 0.

An important property that we use in this work is the Laplace transform of the Hilfer
fractional derivative, which is given by the following lemma.

Lemma 2.6 (cf. [24], Laplace transform Hilfer’s derivative): Let n € N and o € R, such
thatn — 1 < a <nand0 < B < 1; then the Laplace transform of Hilfer derivative is given

by
dk

T [I=P0=0f@).  (2.16)

n—1
LID*P(B))(s) = L D)) — Y s 7P0me)

k=0
Definition 2.7 (cf.[25], Mellin transform): Letf € Lllo .(0,00) The Mellin transform of f (t)
is defined by

MFO}p) = /0 ¢ (B dt (pe ). (2.17)

The domain of definition of the Mellin transform turns out to be an open strip of complex
number p = o + it witho € (a, b). The largest open strip (a, b), where the integral converges,
is called fundamental strip.
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DeﬁnitionZ 8 (cf.[25], Inverse Mellin transform): Let f € L'(0,00) with fundamental
strip (a, b). If y issuch thata < y < b, and M{f(t)}(y + it) integrable, then the equality

1 y+ioco
MM =5 [ M) dp (218)
y —ico

holds almost everywhere. Moreover, if f is continuous, the equality holds everywhere on
(0, 00).

Between the Laplace transform and Mellin transform the following equality is true.

M} p) = M{ﬁ{f(X)}(S) (I —=p). (2.19)

(

Definition 2.9 (Fourier transform): Let f € L'(R"), the Fourier transform of f is defined
by

ey [ —iew
SO =16 = 5= /R e d, (220)

where & = (£1,&2,...,E0),x = (X1,X2,...%,) € R", (§,x) = &1x1 + - - - + Eyxy and dx =
dxidx; - - - dx, and the inverse Fourier transform is given by

Fr@NE) = /R n e EIF(€) d. (2.21)

(27‘[)”/2

3. Ultra-hyperbolic time-fractional diffusion-wave equation

In this section we solve a Cauchy problem associated with the time-fractional diffusion-
wave equation, which results from replacing the Laplacian operator by ultra-hyperbolic
operator.

Let us consider the following Cauchy problem :

DY " u(x, t) — A0u(x,t) =0, t> 0;x €D,
12790y (x, 1) 1= = f (%), (3.1)
d

O je—0a-n

o u(x, t)]=o = g(x).

where D" is the Hilfer derivative (2.11) of order 1 <« <2, and type 0 < r < 1, the
operator [] is defined by

92 2 9 92
D:<—2+~'+— ... ), (3.2)

dx7 dx2 B ax,m 8xu+v
@ + v = n is the dimension of the Euclidean space R”, f,¢ € L' (R") and D is defined by

= {1, X Xpp) €R" i+ v =1, xf

+x§_|_...+xiin+1+...+xi+v}. (3.3)
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To solve the Cauchy problem (3.1), first we apply Fourier transform with respect to the
space variable

DY UE ) + CE 4 EL —En — o — &L )BE D =0, (3.4)

Now, applying the Laplace transform in the time variable to both sides of the above
equation and putting

IENR, = &2+ - +E2 —E2 — - — &2, (3.5)

@i, — e e o) e L jamea gy )
, ’ ot ’

+ |ENZ  i(E,5) =0 (3.6)

using the initial conditions

Uk, s) — sTTETORE) — sTEOp(x) + AEN2, iE,s) = 0, (3.7)
~ Sl—r(z—a) R S—r(Z—oz) )

5 = ). 3.8
e P A e PP 8

Taking inverse Laplace transform is that

i, ) = "R, 0 pagar—1 (=N ) (3.9)

+ 10O G pagar (= IEID, t)Z(E). (3.10)

Then, by inverse Fourier transform

u(x,t) = F T 2E (1 pagar 1 (= IENR 1)) # f(x)

+ 3T E (< CHIELR 1)} g (). (3.11)

To calculate 3_1 {t(l_r)a+zr_2Ecx,(lfr)a+2r71 (_C2 [F3 ||i,]}ta)} y 3_1 {t(l—r)a+2r—l
Ea,(l_r)a+2r(—c2 I& ||;2¢,u %)} use the procedure followed by Yakubovich and Luchko, [16].
To do this, consider

Et,& a, B) = tP T Ey g(£DIIE||2 1Y), (3.12)

where D is a positive constant and ||£ ||12M is given by (3.5).
It is known that the Laplace transform of the function £ (t, §; «, 8) with respect the time
variable ¢ is given by

2B
< T DIEIZ,

Now we calculate the Mellin transform of £(t,&;a, ) with respect to t using the
relation (2.19). Then

LIE(tE a, BY(s) = (3.13)

@—B—p

ds (3.14)
FDIEIZ,

1 oo
MIE(t &5 e B))(p) = m_p)/o -
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Making the change of variables s = (FD||& ||,2w 129 result

[FDIENL, )PP/ poo gapp
MIE & a, = - f do. 3.15
{E(t & a, B)Hp) Ta—p) A (3.15)
Taking 6 = t'/%, we have by definition of Beta function,
o ga=p—p 1 -1 1-8-—
/ d@:—B(ﬁ+p Lop P+1>. (3.16)
o 0609+1 o o o

Finally, from (3.14)-(3.16) , we have that

MEW &0, B} (p) =

(FDIE M) 7P (ﬁ +p—11-B—p
o

Tl —pa + 1) . (3.17)

o

3.1. Inverse Fourier transform of a Mittag-Leffler-type function containing in its
argument a positive-definite quadratic form

Now let us calculate the inverse Fourier transform with respect to the variable & of the
E(t, &;a, B) function.

Given £(t, x;, B) = T HE( & a, B)}(x), then, taking the Mellin transform both sides
with respect to f result

MEt, x50, B)}(p) = T HMIE® E;a, B)H(P)} ()

(1-p-p)/a _ _B_
=($D) P F<ﬂ+P 1)F<1"#+1)
al’'(1 —p) o o

< FTHAEN )PP (). (3.18)

To calculate F~1{(||& ||lzl)v)(1_ﬂ_f’)/°‘}(x) we use a result due to Aguirre (cf.[26], {2.3)

evni/222)»+n7.[n/21-()\ + l’l/2)
I'(=2)

Slxlr )M E) = (H (3.19)

This formula is valid ifx%—l—x%—l—--‘—l-xlainﬂ—l----—l-xlzﬁ_v and 512+§22+--~—|—
2 2 2
wZ it g

Then, fork = (p + B — 1)/a — n/2, we have

i'r(n/2—((p+B—1/a)) (”x”i’v)(p-i-ﬂ—l)/a—n/Z

—1 2 \(1-B—p)/a _
SN0 = DT (o 7 B — e

(3.20)
then, returning to (3.18)

ME(t,x;0, B)}(p) = (3.21)

(1=B—p)/a _ B _
D) AP (1 P=p 1)
al’'(1 —p) o

i'r(n/2—((p+p—1/a))
22((p+B—1)/a) /2

(llxl|2, ) PHA=DIe=r2 - (3.22)
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Taking inverse Mellin transform results

iv(”x”iU)(ﬂ—l)/a—n/Z(:FD)(l_ﬂ)/a
a4B—D/agn/2
1 [PHOT(Q=B—-p)/a+ D1 =B —p)a+n/2)

1/ ) o ~
2, \ , i9(]|x|12,,) B=D/a=n/2( D) 1=B)
R d —
4(FD)t* ad(B=D/agn/2

Et,x;0,B) =

L /P+i°° L((1 =B —p)/a+ DI =B —p)/a+n/2)
271 Jp—ioo ra-p

2
Iz,

s\ 7]
<ﬂ> dp (3.23)

i (1x|2,,) =D/ (D) 1=/
- a4 B—D/agn)2

RS /P+i°° ra—-«s-10/a) = 1/)p)I'd = (B +a —1)/a —n/2) — (1/a)p)
2mi p—ico r(l _P)

soye\ 7]
(M) dp. (3.24)

2
Iz,

From the definition of the H-function, for m=0, n=2, p=2, g=1, and a; =
B-—a)a, Ay =1/a,a=B—a—1)/a—n/2,A, =1/a,b; =0,B; =1

o 1/a
arg 4FD) < C—n
1112, 2

with C = 2 4+ a)/a > 0, we have

i (lx]2,,) /a2 (D) 1-P)
aa(B—D/agn/2

1o —-11 +a—-1 n1
e (1) (5 0) (P -5 0)
e 1)

Etxa,p) =

S (B=1)/a—n/2
L iz,
 (4n(FD))"/? | 4(FD)1

1 — _
Uoos [(aGDye\ | (P2L 1) (Aot nd
x —H —_— a ¢ o 2 o
a ! EIF
L,V
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from (2.5) and (2.6) result

(B—1)/aa—n/2
vih-1 [ 112, r ol

E(t,x;Ol,,B) = (47T(:FD)ta)n/2 4(:FD)tOl

Lo [ R "0\ N 7e (a1
(e e e

Now, using (2.7) we have

jvp-l
(47 (FD)1*)n/?

(o (57 -3)e)
2 1+ —— o,
HZ’O ”'x”u,,v o 2

1,2 >
o () 2 (5 () 52
o o 2 2 o o 2

Et,x;a, B) =

ie.
jreB-1
(47 (FD)t)n/2

no
2o [ %12, (/3 - 7“)
1,2

Returning to (3.11) and using (3.26) for cases

FHEM E 0, B))(x) =

(3.26)

B=0—-rNa+2r—1
and
B=(0—-ra+2r,
we have that the solution of the Cauchy problem (3.1) is
ivt(l—r)a+2r—2
(47 2> )n/2
no
||X||2 <(1—1’)O{+21’—1——,O(>
2,0 MoV
1,2 2
4ct (1 — E’ 1) ,(0,1)
2
ivt(l—r)a+2r—1
+ 2 2
(4m 2t/
) ,y_ 1
o (i, | (@ =net2r=Za)

1,2 2 n
et (1 - 5’1>)(0’1)

providedthatx%+x§+~--+xi in+1 —I—~~+xi+v.

u(x,t) =

* f(x)

* g(x) (3.27)



Downloaded by [Gustavo Dorrego] at 03:43 10 October 2017

402 G. A. DORREGO

3.2. Particular cases

(1) Note that if r=1, the Cauchy problem (3.1) it is expressed in terms of the Caputo
fractional derivative

‘Df u(x, t) — A0u(x, t) = 0;
u(x,0) = f(x), (3.28)
a
gu(x, D=0 = g(x)
and then, from (3.27) the solution is

il)

u(x, t)

= (47T62ta)”/2
no
1——,«a
[Edll ( 2’ )
2,0 M,V
12 | G2 n *f(x)
4C to{ (1 - 1) > (Oa 1)
2
N i't
(4 2 to)n/?
no
2, | (2= 50)
ol % g(x). (3.29)

2
4 (1 11y ,0,1)

Forxf + x5 4+ x5, =0 + -+ x,
(2) If r=0, the Cauchy problem (3.1) is expressed in terms of the Riemann-Liouville
fractional derivative

R=LD¥u(x, t) — F0u(x, t) = 0

P~%u(x, 0) = f(x), (3.30)
0 12—05 t —

Py u(x, t)|r=0 = g(x)

and then, from (3.27) the solution is
iv t()l—2

(47.[Czta)n/2

2 1 no
(i, (e 1-50)

u(x,t) =

1,2 * f ()
4C2t0( (1 - E) 1) > (Oa 1)
2
ivt(x—l
(47T62t°‘)"/2
no
o (I, | (= 5a)
2 * g(x). (3.31)

Providedthatx%+x%+--.+x2 zxi+1+...+x2
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(3) Now, if o | 1 and r=1, the problem (3.1) is reduced to the Cauchy problem
(3.1)-(3.2) of Nonlaopon and Kananthai,[14] and the solution is given by

il)

u(x, t) = —(47T62t)”/2
x|12 (1 _ 1)
o | ”2“’” 2 % F(x) (3.32)
4Ct (1_%>1))(0:1)

but, as

n
_ p
Ix]1% (1 ’1) > llx|%
2,0 MV 2 . JINY
H1,2 421 (1 n - ZRes I'(=p) 402t

- 5) 1) > (0) 1) p=0

0o p
_y (=P [ lIxli2,
p! 42t

p=0

7
= — d 3.33
exp ( 12t (3.33)

finally results that (3.32) coincides with (3.3) of Nonlaopon and Kananthai,[14]
provided that x{ + x5 + - -+ + x7, > xiJrl X,

(4) On the other hand, if & = 2 and r take any value, the problem (3.1) is reduced to the
Cauchy problem (8)-(9) when k=1 of Sansanit and Kananthai [15] and the explicit
solution is given by

il)

u(x, t)

= (477 2122
laly, | A=)
H>? Koy * f(x
12 | e¢ (1—2,1),(0,1) @)
it

+ B
(4m c22)n/2
x H?Y 15 @om) * g(x) (3.34)
5 5 n . .
2\l |(1-2), 00 g
2
Forxi +x5 + -+ +x, > x4+ 1,
Remark 3: An important question about this solution is that it was not given

explicitly in [15].
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