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Abstract. In this work, the thermodynamically consistent non-local model for concretes
subjected to high temperatures originally proposed by Ripani, et al (2014) [1] is extended,
in order to evaluate the failure behavior of partially saturated quasi brittle materials like
soils. This new formulation follows the gradient-based poroplastic theory proposed by
the authors [2], moreover, introduces the temperature as an additional variable of the
internal characteristic length. The non-local effect is achieved assuming that the internal
variables are the only ones of non-local character. Hence, both q and qα will be considered
as arguments in the free energy. On the other hand, in order to reproduce the softening
behavior of partially saturated soils the saturation degree as well as the confinement level
should be considered in the internal characteristic length calibration. Finally, the FE
implementation of this enriched constitutive theory with selective C1 and C0 interpolation
functions for the internal variables and the kinematic fields, respectively, is discussed.

1 INTRODUCTION

The mechanics of porous media constitutes a discipline of great relevance in several
knowledge areas like Geophysics, Biomechanics and Materials Science. Its main aim is
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the description of the kinematic and pore pressure of porous continua when subjected to
arbitrary mechanical and/or physical actions.

The definitive advantages of porous mechanics to macroscopically describe or predict
complex response behavior of cohesive-frictional materials based on fundamental aspects
of their microstructure while accounting for the hydraulic properties and their influence in
the resulting failure mechanism were recognized by several authors in the scientific com-
munity [3, 9]. The influence of the non-isothermal condition in the failure behaviour was
also evaluate by [22, 17]. Consequently, a tendency to replace the theoretical framework
of classical continuum mechanics with that of non-linear porous mechanics was observed.
Firstly this task took place in case of soil mechanics, see a.o. [7, 5], and subsequently in
the field of concrete, see a.o. [27, 19] and, furthermore, of biomaterials , see a.o. [16, 20].

Further development in classical continuum mechanics was the extension to non-local
concepts. The main aim was the regularization of post peak response behavior regarding
mesh size and element orientation in case of finite element analyses, based on fundamental
aspects of the material microstructure, see a.o. [25, 1, 32].

In recent years significant progresses and relevant contributions were made in non-
local gradient formulations for non-porous materials. Thermodynamic frameworks were
considered in the proposals of [1, 21, 28, 8, 32]. Considerations of material anisotropy in
the formulation of internal variables evolution laws in case of gradient plasticity are due
to [2, 29]. Formulation of gradient enhanced coupled damage-plasticity material models
and related finite element implementations, see [25, 12, 6].

Recently, non-local concepts were extended for the formulation of porous material
models, see a.o. [11, 10, 15, 14]. In spite of the strong development of constitutive
modelling for porous media, explained before, there is still a need of thermodynamically
consistent theoretical frameworks. This is particularly the case of non-local models for
porous materials. Thermodynamic concepts should lead to dissipative stress formulations
in hardening and softening regimes that allow non-constant descriptions of the internal
variables of non-local character to accurately predict the sensitivity of porous material
failure behavior to both confinement and saturation levels.

In this work, the thermodynamically consistent formulation for non-porous gradient-
based elastoplasticity by Vrech and Etse [32] which follows general thermodynamic ap-
proach proposed by Svedberg and Runesson [25] for non-local damage formulation is ex-
tended for porous media. Main feature of present proposal is the definition of a gradient-
based characteristic length in terms of both the governing stress and hydraulic conditions
to capture the variation of the transition from brittle to ductile failure mode of cohesive-
frictional porous materials with the confinement level and saturation [14].

2 Thermodynamics of Porous Continua

The postulate of local state stipulates that the internal energy of a homogeneous system
is independent of the evolution rate and it can be characterized by the same state variables
as the ones characterizing equilibrium states. The postulate of local state is extended to
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porous continua by considering that their thermodynamics are obtained by adding the
thermodynamic contributions of each constituent, that are the solid skeleton and the fluid
continuum.

2.1 First law of the Thermodynamics

The first law of Thermodynamics expresses the conservation of energy in all forms.
The energy Ė of a system can be expressed as the sum of its kinetic K̇ and internal energy
Ė of each component of this system. Considering a body occupying the volume Ω, with
boundary ∂Ω, the first law of the thermodynamic is expressed as

Ė = K̇ + Ė = Pext +Q (1)

with

Ė =
d

dt

∫
Ω

e dΩ ; K̇ =
1

2

∫
Ω

ρs (1− φ) |u̇iu̇i|+ ρfφ |wiwi| dΩ

Q =

∫
Ω

ρr dΩ−

∫
∂Ω

hini d∂Ω ; Pext =

∫
Ω

ρbiu̇i dΩ +

∫
∂Ω

σijniu̇j −
p

ρf
wini d∂Ω

(2)

Here, internal energy density (per unit mass) e is the internal energy density (per unit
mass), body force bi is the body force, total stress σij is the stress, pore pressure p is the
pore pressure, heat source density r is a heat source density and heat flux hi is the heat
flux. The displacement displacement ui, the unit normal vector on ∂Ω, ni, and the mass
density ρ, were also included.

Considering the equilibrium equation, the explicit form of the internal energy density
for local dissipative porous material follows from Eq.(1) as

ρė = σij ε̇ij − hfMi,i − hi,i + ρr (3)

being φ the porosity, hf the fluid specific enthalpy and Mi the fluid flow vector.

2.2 The Second law of Thermodynamics

While, the first law states the conservation of energy in all of its forms, the second law
states that the energy can only deteriorate. The second law introduces a new physical
quantity, the entropy, which can only increase when an isolate system is considered. Let
entropy volume density (per unit mass) s be an entropy volume density (per unit mass),
and according to the second law of thermodynamic the entropy S of a thermodynamic
system can not decrease. Thus

Ṡ +Qθ ≥ 0 (4)

with
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Ṡ =

∫

Ω

ρṡ+ (sfMi),i dΩ ; Qθ =

∫

Ω

ρr

T
dΩ−

∫

∂Ω

nihi

T
d∂Ω (5)

being Qθ the entropy flux and T the temperature. Transforming the surface integral of
Eq. (5) into a volume integral, it follows that the volume integral in Eq. (4) must be
non-negative for any system Ω, which yields

ρṡ+ (sfMi),i +

(

hi

T

)

,i

−
ρr

T
≥ 0 (6)

Then, invoking the first law by Eq. (3) and introducing the Helmholtz’s free energy
Ψ = e − sT as well as the free enthalpy of the fluid per mass unit (or Gibbs potential)
gf = hf − sfT , the following expression is attained

σij ε̇ij − gfMi,i − sṪ − Ψ̇−Mi (sfT,i + gf,i)−
hi

T
T,i ≥ 0 (7)

Finally, considering the mass balance equation, ṁ + Mi,i = 0 the Eq. (7) can be
rewritten in the form

Φs + Φf + ΦT ≥ 0 (8)

with

Φs = σij ε̇ij + gfṁ− sṪ − Ψ̇ (9)

Φf = −Mi (sfT,i + gf,i) (10)

ΦT = −
hi

T
T,i (11)

The first component of Eq. (8) is related to the skeleton dissipation, Φs, the second
accounts for the viscous dissipation due to the relative motion of the fluid with respect
to the skeleton and the last source of dissipation, ΦT , involves the temperature gradient
T,i and therefore is related to the dissipation due to heat conduction.

Owing to the additive character of the Helmholtz free energy and entropy, Ψ = Ψs +
mΨf and s = ss + m sf , the fluid state equations and the relation m = ρfφ allow to
express Φs as

Φs = σij ε̇ij + pφ̇− ssṪ − Ψ̇s (12)

This expression of the skeleton dissipation Φs matches the standard expression of the
dissipation of a solid phase. Indeed, the strain work rate of an ordinary solid would reduce
to the term σij ε̇ij. In the case of a porous continuous, the strain work rate related to the
skeleton is obtained by adding pφ̇, to account for the action of the pore pressure on the
skeleton through the internal walls of the porous network.
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3 Thermodynamically consistent gradient-based thermo-poro-plastic theory

The thermodynamic framework of classical or local plasticity is extended to non-local
gradient-based elastoplastic porous material subjected to high temperatures. Following
[23, 4] we assume that arbitrary thermodynamic states of the dissipative material during
isothermal processes are completely determined by the elastic strain εeij = εij − εpij or the
temperature T , the elastic entropy se = s− sp and the internal variables qα with α = s, p
for solid or porous phase, which are considered here as scalar variables.

When considering poroplastic materials the elastic porosity φe = φ − φp needs also
to be included as a thermodynamic argument, see [4]. Based on [25, 32, 14] we further
assume that the internal variables qα, are the only ones of non-local character. Hence,
both qα and qα,i will appear as arguments in the free energy Ψs, such that

Ψs = Ψs

(

εeij, φ
e, T, qα, qα,i

)

(13)

Upon differentiation of Eq. (13) and combining with the intrinsic dissipation of Eq.
(7) on the whole domain Ω, integrating the gradient term by parts and applying the
Divergence Theorem, it follows

∫

Ω

[(

σij −
∂Ψs

∂εeij

)

ε̇ij +

(

p−
∂Ψs

∂φe

)

φ̇+

(

−ss −
∂Ψs

∂T

)

Ṫ +
∂Ψs

∂εeij
ε̇pij +

∂Ψs

∂φe
φ̇p

+
∑

α

Qαq̇α

]

dΩ +

∫

∂Ω

∑

α

Q(b)
α q̇α d∂Ω ≥ 0 (14)

The stress dissipation on the boundary ∂Ω is defined as Q
(b)
α = −∂Ψs/∂qα,ini, also, in

the domain Ω, the dissipative stress Qα can be decomposed into the local and non-local
components, local dissipative stress Qloc

α and non-local dissipative stress Qnloc
α , respectively

Qα = Qloc
α +Qnloc

α (15)

with

Qloc
α = −

∂Ψs

∂qα
; Qnloc

α = −

(

∂Ψs

∂qα,i

)

,i

(16)

In standard form (as for local theory), it is postulated that the last inequality must
hold for any choice of domain Ω and for any independent thermodynamic process. As a
result, Coleman’s equation are formally obtained like for the local continuum theory.

σij =
∂Ψs

∂εeij
; p =

∂Ψs

∂φe
; ss = −

∂Ψs

∂T
(17)

being the dissipative energy
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D = σij ε̇
p
ij + pφ̇p +

∑

α

Qαq̇α ≥ 0 in Ω (18)

D
(b) =

∑

α

Q(b)
α q̇α ≥ 0 on ∂Ω (19)

In the particular case of non-porous material (p = 0) above equations take similar
forms to those obtained by [25, 32] for isothermal situations.

From the above Eq. (18) and Eq. (19), it can be concluded that the difference between
this simplified non-local theory and the local one is the additional gradient term in the
expression of the dissipative stresses Qα, and the boundary dissipation term dissipative
stresses on the boundary Q

(b)
α .

3.1 Thermodynamically consistent constitutive relations

Based on previous works [25, 32], the following additive expression of the free energy
corresponding to non-local gradient poroplastic materials is adopted

Ψs

(

εeij,m
e, T, qα, qα,i

)

= Ψe
(

εeij,m
e, T

)

+Ψp,loc (qα) + Ψp,nloc (qα,i) (20)

whereby Ψe is the elastic energy of non-isothermal porous media deduced in [22, 4].

Ψe =
1

2
εeijCijklε

e
kl +

1

2
M (φe)2 −MBijε

e
ijφ

e
−

1

2
χT 2 + ℓρfφ

eT − Aijε
e
ijT (21)

Whereas local plasticity contributions to the free energy Ψp,loc and non-local contribu-
tions to the free energy Ψp,nloc are the local and non-local gradient contributions due to
dissipative hardening/softening behaviors, which are expressed in terms of the internal
variables qα and their gradient qα,i, respectively.

Once the Coleman’s relationships are deduced from Eq. (17) the following expressions
can be obtained

σij = Cijklε
e
kl −MBijφ

e
− AijT (22)

p = −MBijε
e
ij +Mφe + ℓ ρfT (23)

ss = Aijε
e
ij − ℓρfφ

e + χT (24)

being M the Biot’s module [13], Bij = bδij with Biot coefficient b the Biot coefficient, and
Cijkl = Cs

ijkl +MBijBkl is the undrained elastic constitutive tensor, whereby Cs
ijkl is the

fourth-order elastic tensor which linearly relates stress and strain. Also, χ is the porous
media heat capacity, ℓ is the latent heat of variation in fluid mass content and Aij = αθδij
is the thermal expansion tensor, with αθ the thermal expansion coefficient.
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3.2 Rate form of constitutive equations

Considering the additive decomposition of the free energy potential in Eq. (20) and
the flow rule, the following rate expressions are obtained from Eqs. 22-24

σ̇ij = Cs
ijklε̇kl − Bij ṗ+ (Bijℓρf − Aij) Ṫ − Cs

ijklλ̇
∂g

∂σkl

(25)

ṗ = −MBij ε̇ij +Mφ̇+ ℓρf Ṫ +MBijλ̇
∂g

∂σij

−Mλ̇
∂g

∂p
(26)

ṡs = Aij ε̇ij − ℓρf φ̇+ χṪ − Aijλ̇
∂g

∂σkl

+ ℓρf λ̇
∂g

∂p
(27)

while the evolution law of the local and non-local dissipative stress in Eq. (15) results

Q̇α = Q̇loc
α + Q̇nloc

α (28)

with

Q̇loc
α = −λ̇H loc

α

∂g

∂Qα

(29)

Q̇nloc
α = l2α

(

Hnloc
α ij λ̇,j

∂g

∂Qα

+ λ̇Hnloc
α ij Qα,j

∂2g

∂Qα
2

)

,i

(30)

Thereby, local hardening/softening module local hardening/softening moduleH loc
α have

been introduced as well as the new non-local hardening/softening tensor non-local hard-
ening/softening module Hnloc

α ij as defined in [25]

H loc
α =

∂2Ψp,loc

∂qα
2

, Hnloc
α ij =

1

l2α

∂2Ψp,nloc

∂qα,i∂qα,j
(31)

Hnloc
α ij is a second order positive defined tensor. The internal characteristic length, lα, is a

physical entity that characterizes the material microstructure [18, 24, 30].

4 A finite element formulation for gradient-based thermo-poro-plasticity

Having established the basic principles of the thermodynamically consistent gradient-
based theory for non-isothermal porous media the present section focuses in the formula-
tion of a new C1-continuous FE formulation in order to solve the boundary value problem
with the capacity to reproduce both localized and diffuse failure modes that characterized
quasi-brittle materials like concretes and soils, see Mroginski and Etse [13], Ripani et al
[22] and Coussy [4]
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4.1 Incremental formulation

An incremental formulation of the above boundary value problem introduces residual
terms, what makes the stress update necessary. The transition from elastic to plastic
regimes within a loading step must also be considered. At the end of the j+1 iteration of
current load step, the incremental equilibrium condition, the fluid mass balance, the heat
conservation and the yield condition are studied in a weak form. Thereby, bold symbol
for tensors are used instead of the indicial notation employed in previous sections.

∫
Ω

δεT : σj+1 dΩ−

∫
∂Ω

δuTtj+1 d∂Ω = 0 (32)
∫
Ω

δp ṁj+1 dΩ−

∫
Ω

∇δp ·wj+1 dΩ +

∫
∂Ω

δpwj+1 · n d∂Ω = 0 (33)
∫
Ω

δT ṡsj+1
dΩ−

∫
Ω

qj+1

T0

∇δT dΩ = +

∫
∂Ω

δT
qj+1

T0

· n d∂Ω = 0 (34)
∫
Ω

δλ f (σ, p, Qα)|j+1
dΩ = 0 (35)

In contrast to the local plasticity algorithm, Eq. (35) is not strictly satisfied but in
a weak form. Furthermore, it is only fulfilled when the convergence is reached and not
necessarily during the iterative process.

Considering the decomposition of the stress tensor in the j + 1 iteration as σj+1 =
σj +∆σ, and replacing in Eq. (32) it results

∫
Ω

δεT : ∆σ dΩ =

∫
∂Ω

δuTtj+1 d∂Ω−

∫
Ω

δεT : σj dΩ (36)

Then, the replacement of ∆σ in the last equation by the linearized form of Eq. (25),
results in

∫
Ω

δεT : (Cs : ∆ε−B∆p+ (Bℓρf −A)∆T −Cs : gs∆λ) dΩ =
∫
∂Ω

δuTtj+1d∂Ω−

∫
Ω

δεT : σjdΩ (37)

It can be observed that Eq. (37) is very similar to the incremental equilibrium condition
of classical plasticity as it does not include an explicit dependence on the Laplacian of
the plastic multiplier.

Considering the incremental decomposition of the infiltration vector wj+1 = wj +
∆wj+1 and the rate of the fluid mass content ṁ, as well as the generalized Darcy’s law
for porous media [4], w = −k · ∇p, the Eq. (33) can be reformulated as
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∫

Ω

δp

(

∆p

M
+B : ∆ε−

ℓ ρf

M
∆T − (B : gs − gp)∆λ

)

dΩ =

−∆t

∫

Ω

∇δp · k · ∇pj dΩ−∆t

∫

Ω

∇δp · k · ∇∆p dΩ−∆t

∫

∂Ω

δp wj+1 · n d∂Ω (38)

Then, considering Fourier law qj+1 = −κ∇T and the entropy density rate ṡs in Eq.
(27), the weak form of the heat conservation law in Eq. (34), can be reformulated as

∫

Ω

δT

[

(A− ℓ ρfB)∆ε−
ℓ ρf

M
∆p+

(

(ℓ ρf )
2

M
+ χ

)

∆T + (ℓ ρfB−A)gs∆λ

]

dΩ =

−∆t

∫

Ω

κ

T0

∇δT · ∇∆T dΩ−∆t

∫

Ω

κ

T0

∇δT · ∇Tj dΩ−∆t

∫

∂Ω

δT
qj+1

T0

· n d∂Ω (39)

Following [18], the yield function f can be approximated with sufficient accuracy by
means of a linear Taylor series around

(

σj, pj, Tj, Qαj

)

,

f (σ, p, T,Qα)|j+1
= f (σ, p, T,Qα)|j + f s : ∆σ + fp∆p+ fT∆T + fQα∆Qα (40)

Also, from the additive decomposition of the dissipative stress in Eq. (28) it follows

Q̇α = Q̇loc
α + Q̇nloc

α = −H loc
α gQα λ̇+ l2αH

nloc
α gQα∇

2λ̇ (41)

By replacing Eq. (25) and Eq. (41) into Eq. (40) the weak form of the yield condition
is obtained

∫

Ω

δλ f (σ, p, Qα)|j+1
dΩ =

∫

Ω

δλ f (σ, p, Qα)|j dΩ +

∫

Ω

δλ f s : Cs : ∆ε dΩ

+

∫

Ω

δλ (fp − f s : B)∆p dΩ +

∫

Ω

δλ
(

fT + ℓ ρfB−A
)

∆T dΩ−

∫

Ω

δλf s : Cs : gs∆λ dΩ

+

∫

Ω

δλfQα
(

−H loc
α gQα∆λ+ l2αH

nloc
α gQα∇

2∆λ
)

dΩ = 0 (42)

4.2 Galerkin discretization

As it can be observed in Eqs. (37) - (39) and (Eq. (42)) at most first order derivatives
of the displacement, pore pressure and temperature fields appear as well as second order
derivative of the plastic multiplier. Therefore, displacement, pressure and temperature
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fields discretizations require C0-continuous shape functions that are indicated as Nu, Np

and NT , respectively. However, C1-continuous shape functions, called H, are required
for the plastic multiplier discretization. Then, the Finite Element approximations can be
expressed as

u = Nu ū ; p = Np p̄ ; T = NT T̄ ; λ = H λ̄ (43)

where ū, p̄, T̄ and λ̄ are the nodal displacement vector, the pore pressure, the nodal tem-
perature and the plastic multiplier, respectively. Hence considering ε = ∇su = ∇sNu ū =
B̄ ū and replacing the above entities in Eqs. (37) - (39) and (Eq. (42)) the following set
of integral equations is obtained

{
∫

Ω

δūTB̄T : Cs : B̄ dΩ

}

∆ū−

{
∫

Ω

δūTB̄T : BNp dΩ

}

∆p̄

+

{
∫

Ω

δūTB̄T : (Bℓρf −A)NT dΩ

}

∆T̄ −

{
∫

Ω

δūTB̄T : Cs : gsH dΩ

}

∆λ̄ =

∫

∂Ω

δūTNT
u tj+1 d∂Ω−

∫

Ω

δūTB̄T : σj dΩ (44)

{
∫

Ω

δp̄ NT
pB : B̄ dΩ

}

∆ū+

{

∫

Ω

δp̄

[

NT
pNp

M
+∆t (∇Np)

T
· k · ∇Np

]

dΩ

}

∆p̄

−

{
∫

Ω

δp̄ NT
p

ℓρf

M
NTdΩ

}

∆T̄ +

{
∫

Ω

δp̄ NT
p [gp −B : gs]H dΩ

}

∆λ̄ =

−

{

∆t

∫

Ω

δp̄ (∇Np)
T
· k · ∇Np dΩ

}

p̄j −∆t

∫

∂Ω

δp̄NT
pwj+1 · n d∂Ω (45)

{
∫

Ω

δT̄ NT
T (A− ℓρfB) : B̄ dΩ

}

∆ū−

{
∫

Ω

δT̄ NT
T

ℓρf

M
Np dΩ

}

∆p̄

+

{

∫

Ω

δT̄

[

NT
T

(

(ℓρf )
2

M
+ χ

)

NT +∆t
κ

T0

(∇NT )
T
· ∇NT

]

dΩ

}

∆T̄

+

{
∫

Ω

δT̄ NT
T (ℓρfB−A) : gsH dΩ

}

∆λ̄ =

−

{

∆t

∫

Ω

δT̄
κ

T0

(∇NT )
T
· ∇NT dΩ

}

T̄j −∆t

∫

∂Ω

δT̄ NT
T

qj+1

T0

· n d∂Ω (46)
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{
∫

Ω

δλ̄HTf s : Cs : B̄ dΩ

}

∆ū+

{
∫

Ω

δλ̄HT [fp − f s : B]Np dΩ

}

∆p̄

+

{
∫

Ω

δλ̄HT
[

fT + ℓρfB−A
]

NT dΩ

}

∆T̄

+

{

−

∫

Ω

δλ̄HT
[

f s : Cs : gs + H̄ loc
α

]

H+ l2αH
TH̄nloc

α P dΩ

}

∆λ̄ =

−

∫

Ω

δλ̄HT f
(

σj, pj, Qαj

)

dΩ (47)

where

∇
2 (∆λ) = ∇2 (H)∆λ̄ = P∆λ̄ (48)

H̄ loc
α = fQαH

loc
α gQα (49)

H̄nloc
α = fQαH

nloc
α gQα (50)

Equations (44)-(47) must hold for any admissible variation of δū, δp̄, δT̄ and δλ̄.
Thus, the algebraic equation system in matrix form of the proposed FE formulation for
gradient-dependent thermoporoplastic media can be expressed as









−Kss Qsp QsT Qsλ

Qps Kpp +∆tHpp QpT Qpλ

QTs QTp KTT +∆tHTT QTλ

Qλs Qλp QλT −Kλλ

















∆ū

∆p̄

∆T̄

∆λ̄









=









Fint
s − Fext

s

−Fp

−FT

−Fλ









(51)

Submatrices of Eq. (51) were obtained by inspection from Eqs. (44)-(47). Also, in
Table 1 the solution algorithm of the boundary value problem is summarized.

The main and most important difference between this selective C1-continuous FE for-
mulation and the one based on C0 continuity approximations for gradient plasticity pro-
posed by [26, 31] is the solution procedure. While present formulation requires only the
solution of Eq. (51), the FE approaches proposed by the aforementioned authors require
an additional global iteration to obtain the plastic multiplier.
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