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Abstract

The main objetive of this paper is to present and discuss a family
of functions dependent on five parameters that generalize the one in-
troduced by A. Ungar [8]. The action of Riemann-Liouville fractional
operators over them is evaluated as well their Laplace transform. Par-
ticular case are shown.
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I Introduction and preliminary notes

By using the k-Gamma function and the Pochhammer k-symbol [2] we
define a family of functions that are analogous to the η-Hyperbolic functions
due to A. Ungar ([8]). As special cases, the new functions contains the classical
trigonometric functions sine and cosine, also the hyperbolic functions sinh and
cosh as well its fractional versions. Besides that, for certain values of the
variable, the k-Mittag-Leffler function is obtained.

We begin remembering basic notions that will need for further development
of this paper.

Definition 1 ([1]) Let x ∈ C, k ∈ R and n ∈ N+. The Pochhammer k-symbol
is given by

(x)n,k = x.(x+ k).(x+ 2k)...(x+ (n− 1)k). (I.1)
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Definition 2 ([1]) Let z ∈ C, Re(z) > 0. The k-Gamma function is

Γk(z) =

∫ ∞
0

tz−1e−
tk

k dt (I.2)

Among the many properties that link the Pochhammer k-symbol and the
k-Gamma function, we will highlight those specified in the following

Proposition 1 Given z ∈ C − kZ−; k, s > 0 and n ∈ N+, the following
identity holds

1.

(z)n,s =
( s
k

)n(kz
s

)
n,k

(I.3)

2.

Γs(z) =
( s
k

) z
k
−1

Γk

(
kz

s

)
(I.4)

For the proof we remit to Proposition 4 in [8].
The well know Mittag-Leffler function defined by the following series:

Eα(z) =
∞∑
n=0

zn

Γ(αn+ 1)
, Re(α) > 0. (I.5)

Eα,β(z) =
∞∑
n=0

zn

Γ(αn+ β)
, β ∈ C, Re(α) > 0. (I.6)

has been subject to several generalizations among which we highlight the
one introduced by us in [2]

Eγ
k,α,β(z) =

∞∑
n=0

(γ)n,k
Γk(αn+ β)n!

zn (I.7)

where (γ)n,k is the Pochhammer k-symbol given by (I.1), and Γk(αn + β)
is the k-Gamma function (I.2)

Definition 3 The Riemann-Liouville integral of order ν of a function f is
given by

Iνf(t) =
1

Γ(ν)

∫ t

0

(t− τ)ν−1f(τ)dτ ; t ∈ R+, ν ∈ C, Re(ν) > 0. (I.8)

Definition 4 The Riemann-Liouville fractional derivative of order ν of a func-
tion f is given by

Dνf(t) =

(
d

dt

)n
In−νf(t), t > 0, n = [Re(ν)] + 1. (I.9)
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Definition 5 Let f : R+ → R be an exponential order function and piecewise
continuous. The Laplace transform of f is

L{f(t)}(s) =

∫ ∞
0

e−stf(t)dt (I.10)

provided that the integral in (I.10) exists.

The Laplace transform of the fractional Riemann-Liouville operator are
given by the following:

Proposition 2 Let α ∈ C, Re(α) > 0, then

L{Iαf(t)}(s) =
L{f(t)}(s)

sα
(I.11)

and if α is such that verifies m− 1 < Re(α) ≤ m, then

L{Dαf(t)}(s) = sαL{f(t)}(s)−
m−1∑
j=0

sjDα−j−1f(0). (I.12)

II Main results

In his paper entitled Higher order α-Hyperbolic functions [8] A. Ungar
introduced the α-Hyperbolic functions by the expression

Fα
n,r(z) =

∞∑
k=0

αk

(nk + r)!
znk+r (II.1)

for any pair of integer (n, r), n ≥ 2; 0 ≤ r < n, and any complex constant
α.

By using the k-gamma functions and the Pochhammer k-symbol we define
the k-η-Hyperbolic function by

kF
γ,η
α,β+k(z) =

∞∑
n=0

(γ)n,k η
n

Γk(αn+ β + k)n!
z
α
k
n+β

k (II.2)

for α, γ, k real positive number and β ≥ 0, η ∈ C.
Easily, we can see that for γ = k = 1, and, α and β integers, α ≥ 2,

0 ≤ β < α, we have (II.1).
Moreover, also may be the following special cases:

1. If η = 0

kF
γ,0
α,β+k(z) =

z
β
k

Γk(β + k)
(II.3)
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2. If η = 0, k = 1 and β ∈ N

1F
γ,0
α,β+k(z) =

zβ

β!
, (II.4)

which coincides with the 0-hyperbolic function given in the formulae (2)
of [8].

3. If η = 1,

kF
γ,1
α,β+k(z

k) = z
β
k

∞∑
n=0

(γ)n,k
Γk(αn+ β + k)n!

z
α
k
n

= z
β
kEγ

k,α,β+k(z
α
k ) (II.5)

where Eγ
k,α,β+k(z

α
k ) is the k-Mittag-Leffler function given in (I.7).

4. If β = α− k, β > 0

kF
γ,η
α,α−k+k(z) = z

α
k
−1

∞∑
n=0

(γ)n,k
Γk(α(n+ 1))n!

(ηz
α
k )n, (II.6)

then

kF
γ,η
α,α−k+k(z) = z

α
k
−1Eγ

k,α,α(ηz
α
k ) = ke

ηz
γ,α, (II.7)

where ke
z
γ,α denotes the k-α-Exponential function defined in [4].

Then

kF
γ,η
α,(α−k)+k(z) = ke

ηz
γ,α (II.8)

5. Considering the function kF
γ,η
α,β+k(z) and grouping according to the parity

of the summation index, we have

kF
γ,η
α,β+k(z) =

∞∑
n=0

(γ)n,k η
n

Γk(αn+ β + k)n!
z
α
k
n+β

k (II.9)

= z
β
k {
∞∑
n=0

(γ)2n,k η
2nz

α
k
2n

Γk(α2n+ β + k)(2n)!
(II.10)

+
∞∑
n=0

(γ)2n+1,k η
2n+1z

α
k
(2n+1)

Γk(α(2n+ 1) + β + k)(2n+ 1)!
} (II.11)

Then we may write

kF
γ,η
α,β+k(z) = z

β
k {kCγ,η

α,β+k(z) +k S
γ,η
α,β+k(z)} (II.12)
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where

kC
γ,η
α,β+k(z) =

∞∑
n=0

(γ)2n,k η
2nz

α
k
2n

Γk(α2n+ β + k)(2n)!
(II.13)

and

kS
γ,η
α,β+k(z) =

∞∑
n=0

(γ)2n+1,k η
2n+1z

α
k
(2n+1)

Γk(α(2n+ 1) + β + k)(2n+ 1)!
(II.14)

Choosing the particular value β = α− k, it has

kC
γ,η
α,α(z) =

∞∑
n=0

(γ)2n,k η
2nz

α
k
2n

Γk(α2n+ α)(2n)!

=
∞∑
n=0

(γ)2n,k η
2nz

α
k
2n

Γk(α(2n+ 1))(2n)!
(II.15)

and if γ = 1, η = 1, α = 1 = k, one has

1C
1,1
1,1(z) =

∞∑
n=0

z2n

Γ(2n+ 1)
= cosh(z) (II.16)

If η = iν, γ = 1, ν > 0, α = k = 1, from (II.15) we obtain

1C
1,iν
1,1 (z) =

∞∑
n=0

(−1)nν2nz2n

(2n)!
= cos(νz) (II.17)

By (II.15), (II.16) and (II.17) we designates kC
γ,η
α,β+k(z) the η-hyperbolic

cosine function of order α and (β + k)–th kind.

Analogously, making in (II.14) the following choice of parameters, we
have,

If β = α− k, then

kS
γ,η
α,α(z) =

∞∑
n=0

(γ)2n+1,k η
2n+1z

α
k
(2n+1)

Γk(α(2n+ 2))(2n+ 1)!
(II.18)

and if γ = η = α = k = 1,

1S
1,1
1,1(z) =

∞∑
n=0

z(2n+1)

(2n+ 1)!
= sinh(z) (II.19)
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And, if η = iν, ν > 0, γ = α = k = 1,

1S
1,iν
1,1 (z) = i

∞∑
n=0

(−1)nν2n+1z2n+1

(2n+ 1)!
= i sin(νz) (II.20)

If in (II.18) we take η = −1, and γ = α = k = 1, it results

kS
1,−1
1,1 (z) = − sinh(z) (II.21)

By (II.19), (II.20) and (II.21), we define kS
γ,η
α,β+k(z) the η-hyperbolic sine

function of order α and (β + k)–th kind.

From (II.12), when β = α− k, we may write

kF
γ,η
α,α(z) = z

α
k
−1{kCγ,η

α,α(z) +k S
γ,η
α,alpha(z)} (II.22)

and when α = k = γ = 1

eηz =1 F
γ,η
1,1 (z) = cosh(ηz) + sinh(ηz) (II.23)

Further on we will see other particular cases of the function introduced in
(II.2) allowing us to meet with the functions sinh and cosh.

By analogous considerations to those of Theorem 1 by Srivastava and To-
movski [7], it can be shown that the k-η-Hyperbolic function is an entire func-
tion in the complex plane. Then we have the following

Theorem 1 The k-η-Hyperbolic function kF
γ,η
α,β+k(z) defined by (II.2) is an

entire function in C.

Lemma 1 Let Eγ
k,α,β(ηz

α
k ) be a k-Mittag-Leffler function; then

d

dz

(
Eγ
k,α,β(ηz

α
k )
)

=
α

k
(γ)1,k E

γ+k
k,α,α+β(ηz

α
k ) (II.24)

Lemma 2
d

dz

(
kF

γ,η
α,β+k(z)

)
=
β

k
z−1kF

γ,η
α,β+k(z) +

α

k
γkF

γ+k,η
α,α+β+k(z) (II.25)

Proof.

d

dz

(
kF

γ,η
α,β+k(z)

)
=

d

dz

(
z
β
kEγ

k,α,β+k(ηz
α
k

)
=
β

k
z
β
k
−1Eγ

k,α,β+k

(
ηz

α
k

)
+ z

β
k
d

dz

(
Eγ
k,α,β+k

(
ηz

α
k

))
=
β

k
z−1z

β
kEγ

k,α,β+k

(
ηz

α
k

)
+
α

k
(γ)1,k z

β
kEγ+k,η

k,α,α+β+k

(
z
α
k

)
=
β

k
z−1kF

γ,η
α,β+k(z) +

α

k
(γ)1,k kF

γ+k,η
α,α+β+k(z)
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II.1 Laplace Transform

We start rewriting kF
γ,η
k,α,β+k(z) in term of a three parameters Mittag-Leffler

function.
As we know, from the Definition (II.2) we have

kF
γ,η
α,β+k(z) =

∞∑
n=0

(γ)n,k η
n

Γk(αn+ β + k)n!
z
α
k
n+β

k .

From the (I.3) and (I.4) can be written

(γ)n,k = kn
(γ
k

)
n

(II.26)

and

Γk(γ) = k
γ
k
−1Γ

(γ
k

)
. (II.27)

Then

kF
γ,η
α,β+k(z) =

∞∑
n=0

kn
(
γ
k

)
n
ηn

k
αn+β
k Γ

(
αn+β
k

+ 1
)
n!
z
α
k
n+β

k (II.28)

= k−
β
k z

β
k

∞∑
n=0

(
γ
k

)
n

(
k−

α
k ηz

α
k

)n
Γ
(
α
k
n+ β

k
+ 1
)
n!

(II.29)

i.e.

kF
γ,η
α,β+k(z) =

(z
k

)β
k

kE
γ
k
α
k
,β
k
+1

(
η
(z
k

)α
k

)
(II.30)

Lemma 3 The Laplace transform of kF
γ,η
α,β+k(z) is

L{kF γ,η
α,β+k(z)}(s) =

s−1

(ks)
β
k

1(
1− η

(
1
ks

)α
k

) γ
k

(II.31)

Proof.
Taking into account formulae (11.8) from [3] and making appropiate sub-

stitution we have (II.31).

II.1.1 Particular cases.

1. If α = γ = η = k = 1, and β = 0

L{1F 1,1
1,1 (z)}(s) =

1

s

1(
1− 1

s

) =
1

s− 1
; (II.32)
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which is in accordance with that

1F
1,1
1,1 (z) =

∞∑
n=0

zn

Γ(n+ 1)
= ez (II.33)

and

L{ez}(s) =
1

s− 1
(II.34)

2. If α = 2, β = 1; γ = η = k = 1

L{1F 1,1
2,2 (z)}(s) =

1

s2
1(

1− 1
s2

) =
1

s2 − 1
; (II.35)

and we know that

1F
1,1
2,2 (z) =

∞∑
n=0

z2n+1

Γ(2n+ 2)
= sinh(z) (II.36)

3. If α = 2, β = 0, γ = η = k = 1

L{1F 1,1
2,1 (z)}(s) = L{cosh(z)}(s) =

s

s2 − 1
(II.37)

4. If α = 2, β = 0, γ = k = 1, η = −1

L{z−11F 1,−1
2,1 (z)}(s) = L{cos(z)}(s) =

s

s2 + 1
(II.38)

5. If α = 2, β = 1 γ = k = 1, and η = −1

L{1F 1,−1
2,2 (z)}(s) = L{sin(z)}(s) =

1

s2 + 1
(II.39)

In the next we will show some properties of the k-η-Hyperbolic function
associated with Riemann-Liouville fractional operators.

Theorem 2 Let Iµ be the Riemann-Liouville fractional integral operator (I.8).
Then holds

Iµ
(
kF

γ,η
α,β+k(z)

)
(t) =

(
t

k

)µ
kF

γ,η
α,β+k+µk(t) (II.40)

Proof.
Taking into account (II.30), applying Theorem 11.3, formulae (11.11) from

[3], it results

Iµ
[
kF

γ,η
α,β+k(z)

]
(t) =

(
t

k

)β
k
+µ

E
γ
k
α
k
,β
k
+1+µ

(
ηt

α
k

)
(II.41)

=

(
t

k

)µ
kF

γ,η
α,β+k+µk(t) (II.42)



The k-η-hyperbolic functions 475

Theorem 3 Let Dµ be the Riemann-Liouville fractional derivative definied by
(I.9), then holds

Dµ
(
kF

γ,η
α,β+k(z)

)
(t) =

(
t

k

)−µ
kF

γ,η
α,β+k−µk(t) (II.43)

Proof.
Analogously to what was done in the previous theorem and applying The-

orem 11.3, formula (11.13) from [3] we have

Dµ
[
kF

γ,η
α,β+k(z)

]
(t) =

(
t

k

)β
k
−µ

E
γ
k
α
k
,β
k
+1−µ

(
ηt

α
k

)
(II.44)

=

(
t

k

)−µ
kF

γ,η
α,β+k−µk(t) (II.45)

Example: If α = 2, β = 1 γ = k = 1, η = −1, and µ = α
k

= 2 we have

D2
[
1F

1,−1
2,2 (z)

]
(t) = D2

[
∞∑
n=0

(−1)nz2n+1

Γ(2n+ 2)

]
(t) (II.46)

= D2 [sin(z)] (t) (II.47)

= t−21F
1,−1
2,0 (t) (II.48)

By other hand, from (II.30) we have

t−21F
1,−1
2,0 (t) = t1−2E1

2,1+1−2(−t2) (II.49)

= t−1
∞∑
n=0

(−1)nt2n

Γ(2n− 1 + 1)
(II.50)

= −
∞∑
n=0

(−1)nt2n+1

(2n+ 1)!
(II.51)

= − sin t (II.52)
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