
Applied Mathematical Sciences, Vol. 11, 2017, no. 51, 2541 - 2560
HIKARI Ltd, www.m-hikari.com

https://doi.org/10.12988/ams.2017.78261

On the p-k-Mittag-Leffler Function

Rubén A. Cerutti, Luciano L. Luque and Gustavo A. Dorrego

Faculty of Exact Sciences
National University of the Northeast.

Av. Libertad 5540 (3400); Corrientes, Argentina

Copyright c© 2017 Rubén A. Cerutti, Luciano L. Luque and Gustavo A. Dorrego. This
article is distributed under the Creative Commons Attribution License, which permits un-
restricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Abstract

In this paper, we define the function pEγk,α,β(z), estudy its ana-
lytic properties, some elementary properties as its integral expression,
its relationship with the fractional operator of Riemann-Liouville and in-
vestigate the fractional generalization of the kinetic equation involving
this Mittag-Leffler type function. This new Mittag-Leffler-type func-
tion related to the two parameters Gamma function recently introduced
by Gehlot [8], is a generalizaton of the k-Mittag-Leffler function since
kΓk(z) = Γk(z), thus generalize the Mittag-Leffler of two parameter,
Mittag-Leffler function and the exponential function.
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I Introduction
The branch of mathematical analysis known as the Fractional Calculus deals
essentially with operators of differentiation and integration of non-integer or-
ders (see e.g. [22], [14]). Many authors have generalized differential equa-
tions (integral equations) by replacing the ordinary derivative (integral) by
some of the definitions that contemplate non-integers; for example: Riemann-
Liouville, Caputo, Grundwald-Letnikov, Hadamard and other more modern
ones such as Caputo-Fabrizio (see e.g. [22], [2], [12], [24], [20], [1], and the
references in them). In the solution of such differential (integral) equations
the Mittag-Leffler function naturally appears to play a role analogous to that
of the exponential function in the ordinary case.
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The Mittag-Leffler function has generated much interest among researchers
and has been the subject of many generalizations (see e.g. [21], [15], [5], [7],
[4], [26], and the references in them) giving rise to the so-called Mittag-Leffler
type functions. It has also been used to generalize fractional integral operators
(see e.g. [27], [6]).

II Preliminaries.
In this section we present results and definitions known and important for
the development of the following sections. We begin with the Mittag-Leffler
function and some of its generalizations.

The Mittag-Leffler function Eα(z) and its first generalization to two pa-
rameters Eα,β(z) are given by the following series:

Eα(z) =
∑
n≥0

zn

Γ(αn+ 1)
(z ∈ C; Re(α) > 0) (II.1)

and

Eα,β(z) =
∑
n≥0

zn

Γ(αn+ β)
(z ∈ C; Re(α) > 0,Re(β) > 0) (II.2)

respectively; where Γ(z) is the classical Gamma function, and verifies Eα,1(z) =
Eα(z).

Prabhakar (see [21]) introduced the Mittag-Leffler type function Eγ
α,β(z)

defined by

Eγ
α,β(z) =

∑
n≥0

(γ)nz
n

Γ(αn+ β)n!
(II.3)

with α, β and γ ∈ C; and (γ)n denotes the Pochhammer symbol, and verifies
E1
α,β(z) = Eα,β(z).
A generalization of the Mittag-Leffler function called k-Mittag-Leffler func-

tion has been introduced and studied in [4]:

Eγ
k,α,β(z) =

∑
n≥0

(γ)n,kz
n

Γk(αn+ β)n!
(II.4)

with k > 0; α, β,γ ∈ C; Re(α) > 0, Re(β) > 0, and z ∈ C; where Γk is the
k-Gamma Funcion and (γ)n,k is the Pochhammer k-symbol due to Diaz and
Pariguan (see [3]), and are

(γ)n,k = γ(γ + k)(γ + 2k)...(γ + (n− 1)k); (II.5)
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Γk(z) =

∫ ∞
0

tz−1e−
tk

k dt (Re(z) > 0). (II.6)

The following properties are verified:

(z)n,k =
Γk(z + nk)

Γk(z)
(II.7)

and

Γk(z) = k1− z
kΓ
(z
k

)
, (II.8)

with z ∈ C \ kZ−, k > 0. Also, the expression Eλ
1,α,β(z) = Eλ

α,β(z) is verified
(see [4]).

Recently, K.S. Gehlot [8] has introduced a modification of the k-Gamma
function by means of the following integral

pΓk(z) =

∫ ∞
0

e−
tk

p tz−1dz, forz ∈ C\kZ−; k, p ∈ R+ \{0}, Re(z) > 0. (II.9)

Also, he has defined a new Pochhammer symbol

p(z)n,k =
(zp
k

)
.

(
zp

p
+ p

)
.
(zp
k

+ 2p
)
...
(zp
k

+ (n− 1)p
)

=
pΓk(z + nk)

pΓk(z)
(II.10)

and also establishes the relations between the function introduced by him and
the k-Gamma and the classical Gamma function. In fact, we have following.

Lemma 1. For the p-k-Gamma function, the k-Gamma function and the clas-
sical Gamma function it is verified:

pΓk(z) =
(p
k

) z
k

Γk(z) =
p
z
k

k
Γ
(z
k

)
(II.11)

The proof could be seen in [8].
And, for the p(z)n,k Pochhammer symbol, we have the following relation

Lemma 2. For the p-k-Pochhammer symbol, the k-Pochhammer symbol and
the classical Pochhammer symbol it has

p(z)n,k =
(p
k

)n
(z)n,k = pn

(z
k

)
n

(II.12)
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Definition 1. Let [a, b] ⊂ R be (−∞ < a < b <∞). The Riemann-Liouville
fractional integrals Iαa+f and Iαb−f of order α ∈ R, with m − 1 < α ≤ m,
m ∈ N, are defined by

(Iα+af)(x) =
1

Γ(α)

∫ x

a

f(t)

(x− t)1−αdt (x > a ; α > 0) (II.13)

and

(Iα−bf)(x) =
1

Γ(α)

∫ b

x

f(t)

(t− x)1−αdt (x < b ; α > 0), (II.14)

respectively.
The Riemann-Liouville fractional derivative Dα

a+f and Dα
b−f of order α > 0

are defined by

(Dα
a+f)(x) =

(
d

dx

)m
(Im−αa+ f)(x) (x > a) (II.15)

and
(Dα

b−f)(x) =

(
− d

dx

)m
(Im−α−b f)(x) (x < b), (II.16)

respetively.
In particular, when α = m ∈ N0, then

(D0
a+f)(x) = (D0

b−)(x) = f(x), (II.17)

(Dm
a+f)(x) = f (m)(x), (II.18)

(Dm
b−)(x) = (−1)nf (m)(x) (II.19)

(see, for example, [14]).
In 2012 Mubeen and Habbibulah (see [19]) introduced the k-Riemann-

Liouville fractional integral given by the following

Definition 2. Let α ∈ R+ and n ∈ N such that n−1 < α < n, f ∈ L1([0,∞)).
Then the k-Riemann-Liouville fractional integral of f is

Iαk f(t) =
1

kΓk(α)

∫ t

0

(t− τ)
α
k
−1f(τ)dτ, (t > 0); (II.20)

wich can be written as a convolution with the singular kernel of Riemann-
Liouville:

Iαk f(t) =
t
α
k
−1

kΓk(α)
∗ f(t), t > 0. (II.21)

Definition 3 (Laplace transform). Let f : R+ → R an exponential order
and piecewise continuous function, then the Laplace transform of f is

L{f(t)}(s) :=

∫ ∞
0

e−stf(t)dt. (II.22)

The integral exist for Re(s) > 0.
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III Definition and convergence conditions
In view of the expressions (II.9) and (II.10) we introduce a new function of
Mittag-Leffler type that we will call the p-k-Mittag-Leffler function by means
of the following

Definition 4. Let α, β, γ be complex numbers with Re(α) > 0, Re(β) > 0,
Re(γ) > 0; and let p, k ∈ R+ \ {0}. We define the p-k-Mittag-Leffler function
pEk,α,β(z) by the series

pEk,α,β(z) =
∞∑
n=0

p(γ)k,n z
n

pΓk(αn+ β)n!
(III.1)

where pΓk(x) is given by (II.9), and p(γ)n,k is the Pochhammer symbol given
by (II.10).

As particular cases of pEk,α,β(z) we have the classical two parameters Mittag-
Leffler function Eα,β(z) for p = k = γ = 1 and for p = k one gets the k-Mittag-
Leffler function Eγ

k,α,β(z), and for p = k = 1, the Mittag-Leffler function due
to Prabhakar [21] is obtained.

III.1 Order and Type of the pEγk,α,β(z) function

In this section, we present some caracteristics of the p-k-Mittag-Leffler func-
tion. We will show that the p-k-Mittag-Leffler function is an entire function,
and we will also give the order and the type.

Theorem 1. The p-k-Mittag-Leffler function, defined in (III.1), is an entire
function of order ρ and type σ given by

ρ =
k

Re(α)
, and σ =

[
ρpeRe(α/k ln(α/k))ρ

]−1
. (III.2)

Moreover, for all ε > 0,the next asymptotic estimate holds:∣∣
pEγk,α,β(z)

∣∣ < e(σ+ε)|z|ρ , (III.3)

with ρ, σ as in (III.2), for |z| ≥ r0, r0 = r0(ε) > 0 sufficiently large.

Proof. The radius of convergence of the p-k-Mittag-Leffler function will be
called R. Taking into account the properties (II.10) and (II.11),and making
use of the asymptotic expansions for the Gamma function(see for example
[14]); and the asymptotic Stirling’s formula:

Γ(z) = (2π)
1
2 zz−

1
2 e−z[1 +O(z − 1)] (| arg(z)| < π ; |z| → ∞); (III.4)
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in particular,

n! = (2πn)
1
2nne−n[1 +O(n−1)] (n ∈ N ; n→∞); (III.5)

and the quotient expansion of two Gamma functions at infinity:

Γ(z + a)

Γ(z + b)
= za−b[1 +O(z−1)] (| arg(z) + a| < π ; |z| → ∞). (III.6)

Rewriting the series (III.1) in the following way

pEγk,α,β(z) =
∞∑
n=0

p(γ)n,k

pΓk(αn+ β)n!
zn =

∞∑
n=0

cnz
n. (III.7)

Since

R = lim sup
n→∞

∣∣∣∣ cncn+1

∣∣∣∣ ; (III.8)

in view of the properties (III.4), (III.5) and (III.6), we can easily see that

∣∣∣∣ cncn+1

∣∣∣∣ =

∣∣∣∣ p(γ)n,k

pΓk(αn+ β)n!
pΓ[α(n+ 1) + β](n+ 1)!

p(γ)n+1,k

∣∣∣∣
=

∣∣∣∣ pΓk(γ + nk)

pΓk(γ) pΓk(αn+ β)n!
pΓk(γ) pΓk(αn+ α + b)(n+ 1)!

pΓk[γ + (n+ 1)k]

∣∣∣∣
=

∣∣∣∣∣ k−1p
γ+nk
k Γ

(
γ+nk
k

)
k−1p

αn+β
k Γ

(
αn++β

k

)
n!

k−1p
αn+α+β

k Γ
(
αn+α+β

k

)
(n+ 1)!

k−1p
α+nk+k

k Γ
(
α+nk+k

k

) ∣∣∣∣∣
= (n+ 1)

∣∣pαk−1
∣∣ ∣∣∣∣∣Γ

(
α
k
n+ α

k
+ b

k

)
Γ
(
α
k
n+ β

k

) ∣∣∣∣∣
∣∣∣∣∣ Γ

(
n+ γ

k

)
Γ
(
n+ γ

k
+ 1
)∣∣∣∣∣

≈
∣∣pαk−1

∣∣ ∣∣∣∣(αk n)αk
∣∣∣∣→∞. (III.9)

Thus, the p-k-Mittag-Leffler function is an entire function.
To determine the order ρ and the type σ are applied the next definitions:

ρ = lim sup
n→∞

n lnn

ln (1/|cn|)
, (III.10)

eρσ = lim sup
n→∞

(
n|cn|

ρ
n

)
. (III.11)

Using the relations (III.4), (III.5), (III.6) and (III.7) we have
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1

|cn|
=

∣∣∣∣ pΓk(γ) pΓk(αn+ β)n!

pΓk(γ + nk)

∣∣∣∣
= k−1n!

∣∣∣pn(αk−1)+β
k

∣∣∣ ∣∣∣∣Γ(αk n+
β

k

)∣∣∣∣ ∣∣∣Γ(γk + n
)∣∣∣−1 ∣∣∣Γ(γ

k

)∣∣∣
≈ k−1

(
(2π)

1
2nn+ 1

2 e−n
) ∣∣∣pn(αk−1)+β

k

∣∣∣ (√2π

∣∣∣∣(αk n)αk n+β
k
− 1

2

∣∣∣∣ ∣∣e−αk n∣∣)×
×
(√

2π
∣∣∣n γ

k
+n− 1

2

∣∣∣ ∣∣∣Γ(γ
k

)∣∣∣)−1 ∣∣∣Γ(γ
k

)∣∣∣
= k−1(2π)

1
2

∣∣∣pn(αk−1)+β
k

∣∣∣ ∣∣∣∣(αk)αk n+β
k
− 1

2

∣∣∣∣ ∣∣∣nnαk+β
k
− γ
k

+ 1
2

∣∣∣ ∣∣∣Γ(α
k

)∣∣∣ e−nRe(αk )

≈ k−1(2π)
1
2

∣∣∣pn(αk−1)
∣∣∣ ∣∣∣∣(αk)αk n

∣∣∣∣ ∣∣nnαk ∣∣ ∣∣∣Γ(αk)∣∣∣ e−nRe(αk )

= e
1
2

ln( 2π
k )+ln|Γ(αk )|+Re[n(αk−1) ln p+nα

k
ln α

k
+nα

k
lnn−nα

k ]. (III.12)

Hence, using (III.12), by application of (III.10), we have

1

ρ
= lim sup

n→∞

1
2 ln

(
2π
k

)
+ ln

∣∣Γ (αk )∣∣+ Re
[
n
(
α
k − 1

)
ln p+ nαk ln α

k + nαk lnn− nαk
]

n lnn
, (III.13)

=
Re(α)

k

which is the wanted result in (III.2).
Similarly, on substituting (III.12) into (III.11), this yields

σeρ = lim sup
n→∞

[
n|cn|ρ/n

]
= lim sup

n→∞

[
elnn− 1

2
ln( 2π

k )−ln|Γ(αk )|−Re[n(αk−1) ln p+nα
k

ln α
k

+nα
k

lnn−nα
k ] k

nRe(α)

]
= p−1e−Re[αk ln α

k ] k
Re(α) . (III.14)

Finally, we obtain that

σ =
[
ρpeRe(α/k ln(α/k))ρ

]−1
. (III.15)

III.2 Elementary properties.

According to the Defintion 4, the following relationships can be obtained, which
we will gather in the following
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Theorem 2. Let pEk,α,β(z) be the p-k-Mittag-Leffler function given by (III.1),
we have

1.

pEγk,α,β(z) =
1

pΓk(β)
+ z

∞∑
n=0

(γ)n+1 z
n

pΓk(αn+ α + β)(n+ 1)!
. (III.16)

2.
1

p
pEγk,α,β(z) =

β

k
pEγk,α,β+k(z) +

α

k
z
d

dz

(
pEγk,α,β+k(z)

)
. (III.17)

3.
dm

dzm
[z

β
k
−1

pEγk,α,β(z
α
k )] = p−mz

β
k
−m−1

pEγk,α,β−mk(z
α
k ). (III.18)

Proof. From the (III.1), one has 1).
As particular case, if p = k = γ = 1, (III.16) reduces to (5.1) f.1 from [13]:

Eα,β(z) =
1

Γ(β)
+ zEα,α+β(z) (III.19)

To obtain (III.17), and taking into account that

pΓk(αnβ + k) =
p
αn+β+k

k

k
Γ

(
αn+ β

k
+ 1

)
=
p
αn+β+k

k

k

(
αn+ β

k

)
Γ

(
αn+ β

k

)
=

p
αn+β
k

+1

k

(
αn+ β

k

)
pΓk(αn+ β) = p pΓk(αn+ β). (III.20)

Then
α

k
z
d

dz
(pEk,α,β+k(z)) =

∞∑
n=0

p(γ)k,n
nα
k
zn

pΓk(αn+ β + k)
(III.21)

and
β

k
pEk,α,β+k(z) =

∞∑
n=0

p(γ)k,n
β
k
zn

pΓk(αn+ β + k)
. (III.22)

From (III.21) and (III.22), we have

α

k
z
d

dz
(pEk,α,β+k(z)) +

β

k
pEk,α,β+k(z) =

1

p
pEk,α,β(z). (III.23)

Particular case:

If p = k = γ = 1, (III.23) is

αz
d

dz
(Eα,β+1(z)) + βEα,β+1(z) = Eα,β(z), (III.24)
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which coincides with formulae (5.1) f.2 from [13].
To prove (III.18), we will start by showing that(

d

dz

)m (
z
α
k
n+β

k
−1
)

=

(
α

k
n+

β

k
− 1− (m− 1)

)
m

z
α
k
n+β

k
−1−m. (III.25)

Knowing that (
α

k
n+

β

k
− 1− (m− 1)

)
m

=
Γ
(
α
k
n+ β

k

)
Γ
(
α
k
n+ β

k
−m

) (III.26)

and, by using (III.24), it results(
α

k
n+

β

k
− 1− (m− 1)

)
m

= p−m
pΓk(αn+ β)

pΓk(αn+ β −mk)
. (III.27)

Then, from (III.25), (III.26) and (III.27) we have (III.18).

Particular cases:

• When p = k, (III.18) coincides with (II.28) from [4].

• When p = k = 1, (III.18) coincides with (11.5) from [13].

• When p = k = γ = 1, (III.18) coincides with (5.1) f.3 from [13].

Theorem 3. Let α, β, and γ be complex numbers, k > 0, Re(α) > 0, Re(β) >
0 and Re(γ) > 0. Then∫ z

0

t
β
k
−1

pEγk,α,β(at
α
k )dt = pz

β
k pEγk,α,β+k(az

α
k ) (III.28)

Proof. By interchanging the order of integration and summation, we have∫ z

0

t
β
k
−1

pEγk,α,β(at
α
k )dt =

∞∑
n=0

p(γ)k,na
n

pΓk(αn+ β)n!

∫ z

0

t
α
k
n+β

k
−1dt. (III.29)

Taking into account that

pΓk(αn+ β) =
p
αn+β
k

k
Γ

(
αn+ β

k

)
, (III.30)

the recurrence relation for the classical gamma function and (III.24), it results(
α

k
n+

β

k

)
pΓk(αn+ β) =

1

p
pΓk(αn+ β + k). (III.31)
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Then, the right hand member of (III.29) is equal to

p

∞∑
n=0

p(γ)k,n(az
α
k )nz

β
k

pΓk(αn+ β + k)
= pz

β
k pEk,α,β+k(az

α
k ). (III.32)

Particular case: If p = k = γ = 1, it has∫ z

0

tβ−1Eα,β(atα)dt = zβEα,β+1(atα), (III.33)

which coincides with formula (2.3.17) from [18].

Theorem 4. Let α, β, γ be complex numbers, k > 0, Re(α) > 0, Re(β) > 0,
Re(γ) > 0, and let pEγk,α,β(z) the p-k-Mittag-Leffler function. Then

L
{
z
β
k
−1

pEγk,α,β[±(cz)
α
k ]
}

(s) = k(sp)−
β
k

(
1∓ p

( c
ks

)−α
k

)− γ
k

. (III.34)

Proof. Applying the Laplace transform in the right hand member of the (III.1),
the relations (II.9) and (II.10), the Laplace transform of the potential function
(see e.g. [14], f. (1.4.58)) and the generalized binomial formula given by

(1− kw)−
γ
k =

∞∑
k=0

(γ)n,kw
n

n!
, (III.35)

we have∫ ∞
0

e−szz
β
k
−1

∞∑
n=0

p(γ)k,n (±1)n(cz)
α
k
n

pΓk(αn+ β)n!
dz =

∞∑
n=0

p(γ)k,n (±1)nc
α
k
n

pΓk(αn+ β)n!

∫ ∞
0

e−szz
α
k
n+β

k
−1dz

=
k

(sp)
β
k

∞∑
n=0

p(γ)k,n
n!

(
c

ps

)α
k
n

=
k

(sp)
β
k

∞∑
n=0

(γ)k,n
n!

[(
c

ps

)α
k p

k

]n
=

k

(sp)
β
k

1[
1∓ p

(
c
ks

)α
k

] γ
k

,

with
∣∣∣p ( cks)αk ∣∣∣ < 1.

Corollary 1. If p = k = 1 in Theorem 4, we have

L
{
zβ−1

pEγ1,α,β(zα)
}

(s) = L
{
zβ−1Eγ

α,β(zα)
}

(s) (III.36)

= s−β(1− s−α)−γ, (III.37)
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which coincides with formula (11.13) of [13].

Corollary 2. If p = k in Theorem 4, remembering that pΓk(z) = Γk(z), we
have that kEγk,α,b(z) = Eγ

k,α,β(z), and

L
{
z
β
k
−1

kEγk,α,b(z)
}

(s) = k1−β
k s−

β
k

(
1− k1−α

k s−
α
k

)−α
k (III.38)

=
k1−β

k s
βγ

k2

s
α
k

(
s
β
k − k1−α

k

) γ
k

, (III.39)

which coincides with formula (II, 29) of [4].

IV The Euler-Beta Transform
The Beta-Euler transform of a given function is defined by the following inte-
gral:

B (f(z); a; b) =

∫ 1

0

za−1(1− z)b−1f(z)dz, (IV.1)

with a, b ∈ C and min {Re(a),Re(b)} > 0 (see, for example [25]).

Theorem 5. Let α, β, γ, a and b be complex numbers, Re(α) > 0, Re(β) > 0,
Re(γ) > 0, Re(a) > 0, Re(b) > 0 and k > 0, then

B

(
pEγk,α,β

(
z
α
k

)
;
β

k
,
b

k

)
= k pΓk(b) pEγk,α,β+b(λ). (IV.2)

Proof.

B

(
pEγk,α,β

(
z
α
k

)
,
β

k
,
b

k

)
=

∫ 1

0

z
β
k
−1(1− z)

b
k
−1

∞∑
n=0

p(γ)k,nλ
nz

α
k n

pΓk(αn+ β)n!
dz, (IV.3)

interchanging the order of integration and the summation, and using the rela-
tion between the p-k-Gamma function and the classical Gamma function given
by (II.11), we have

B

(
pEγk,α,β

(
z
α
k

)
,
b

k
,
b

k

)
=
∞∑
n=0

p(γ)k,nλ
n

pΓk(αn+ β)n!

∫ 1

0

z
α
k
n+β

k
−1(1− z)

b
k
−1dz =

=
∞∑
n=0

p(γ)k,nλ
n

pΓk(αn+ β)n!

Γ
(
αn+β
k

)
Γ
(
b
k

)
Γ
(
αn+β+b

k

) = k pΓk(b)
∞∑
n=0

p(γ)k,nλ
n

pΓk(αn+ β + b)n!
=

= kΓ(b) pEγk,α,β+p(λ). (IV.4)
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Corollary 3. If p = k in Theorem 5, it result

B
(
Eγk,α,β

(
αz

α
k

)
; β, β

)
= Γ(b)Eα,β+b(λ), (IV.5)

which coincides with formula (II, 37) from [4].

Corollary 4. If p = k = γ = 1 in Theorem 5, we have

B (Eα,β (λzα) ; β; β) = Γ(b)Eα,β+b(λ), (IV.6)

which coincides with formula (2.2.14) from [18].

V Some additional properties of pEγk,α,β(z).

Theorem 6 (Integral Expresion). Let α, β and γ be complex numbers, α > 0,
β > 0 and k > 0, then

pEγk,α,β(z) = p
γ−β
k

1

pΓk(γ)

∫ ∞
0

e−tt
γ
k
−1φ

(
λt;

α

k
;
β

k

)
dt, (V.1)

where φ
(
λt; α

k
; β
k

)
is the Wright function given by

φ

(
λt;

α

k
;
β

k

)
=
∞∑
n=0

λntn

Γ
(
α
k
n+ β

k

)
n!

; α > −1, β > 0. (V.2)

(See [10] and [9]).

Proof. Starting by the right-hand member of (V.1) and interchanging the order
of integration and the summmation we have

I =
∞∑
n=0

λn

n!

1

pΓk(γ)

∫ ∞
0

e−tt
γ
k

+n−1

Γ
(
α
k
n+ β

k

)dt =
∞∑
n=0

λn

n!

1

pΓk(γ)

Γ
(
γ
k

+ n
)

Γ
(
α
k
n+ β

k

) . (V.3)

Taking into account (II.11) it result

I =
∞∑
n=0

λn

n!
p

(α−k)n
k p

β−γ
k

pΓk(γ + nk)

pΓk(γ) pΓk(αn+ β)

= p
β−γ
k

∞∑
n=0

p(γ)k,n

(
p
α−k
k λ
)n

pΓk(αn+ β)n!

= p
β−γ
k pEγk,α,β

(
p
α−k
k λ
)
. (V.4)
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V.1 The p-k-Mittag-Leffler Function and the Riemann-
Liouville Fractional Operators

The operators that in this section will consider are those defined by (II.13),
(II.14), (II.15) and (II.16).

Theorem 7. Let α, b > 0, γ > 0, ν > 0, and let I
ν
k
− be the right-sided

Riemann-Liouville fractional integral. Then we have

I
α
k
−

[
t−

ν
k
−β
k pEγk,αβ

(
t−

α
k

)]
(x) = p

ν
kx−

β
k pEγk,α,β+ν

(
x−

α
k

)
. (V.5)

Proof. From (II.11) and (II.12) we find

R = I
ν
k
−

[
t−

ν
k
−β
k pEγk,αβ

(
t−

α
k

)]
(x)

=
1

Γ
(
ν
k

) ∫ ∞
x

t−
ν
k
−β
k (t− x)

γ
k
−1

∞∑
n=0

p(γ)k,nt
−α
k
n

pΓk(αn+ β)n!
dt. (V.6)

By interchanging the order of integration and summation, we have

R =
1

Γ
(
ν
k

) ∞∑
n=0

p(γ)k,n

pΓk(αn+ β)n!

∫ ∞
x

t−
ν
k
−β
k
−α
k (t− x)

γ
k
−1dt. (V.7)

Making appropiate changes of variables and using the following integral
given by formula 3.191.2 from [11]∫ ∞

x

(t− x)a−1t−cdt = xa−cB(a, c− a), Re(c) > Re(a) > 0; (V.8)

and B(x, y) the classical Beta function, can be written

R =
1

Γ
(
ν
k

) ∞∑
n=0

p(γ)k,n

pΓ(αn+ β)n!
x
ν
k
−( γk+β

k
+αn

k )B

(
γ

k
,
ν + β + αn

k
− ν

k

)
=

1

Γ
(
ν
k

) ∞∑
n=0

p(γ)k,nx
−αn

k Γ
(
β+αn
k

)
pΓ(αn+ β)n!Γ

(
γ+β+αn

k

) . (V.9)

Taking into account (II.11) it results

R = p
ν
kx−

β
k

∞∑
n=0

p(γ)k,n
(
x
α
k

)n
pΓk(αn+ β + ν)n!

= p
ν
kx−

β
k pEγk,α,β+ν

(
x−

α
k

)
. (V.10)
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Corollary 5. If we take p = k = 1 in (V.10), we have

Iν−
[
t−ν−βEγ

α,β(t−α)
]

(x) = x−βEγ
α,β+v(x

−α), (V.11)

which coincides with formulae (24) of [23].

Theorem 8. Let α, β, γ and γ be positive real numbers, and let λ ∈ R. Then
there holds

(
I
ν
k
0+

[
t
β
k
−1

pEγk,αβ
(
λt

α
k

)])
(x) = p

ν
kx

β+ν
k
−1

pEγk,α,β+ν

(
λx

α
k

)
. (V.12)

Proof. Applying the definition of the fractional integral operator, and then by
interchanging the order of integration and summation, we have(
I
ν
k
0+

[
t
β
k−1 pEγk,αβ

(
λt

α
k

)])
(x) =

1

Γ
(
ν
k

) ∫ x

0

(x− t) νk−1t
β
k−1 pEγk,α,β

(
λt

α
k

)
dt (V.13)

=
α

k

∞∑
n=0

p(γ)n,kλ
n

n! pΓk(αn+ β)n!

∫ x

0

t
α
k n+

β
k−1(x− t) νk−1dt. (V.14)

Taking into account that by suitable changes of variables and making use of
the Beta function, we have

1

Γ
(
γ
k

) ∫ x

0

t
α
k
n+β

k
−1(x− t)

γ
k
−1dt =

=
1

Γ
(
γ
k

) ∫ 1

0

x
α
k
−1(1− τ)

γ
k
−1x

α
k
n+β

k
−1τ

α
k
n+β

k
−1xdt =

=
a

Γ
(
γ
k

)xαk n+β
k

+ γ
k
−1 Γ

(
γ
k

)
Γ
(
α
k
n+ β

k

)
Γ
(
γ
k

+ α
k
n+ β

k

) . (V.15)

By replacing (V.15) in (V.14), it result

(
I
ν
k
0+

[
t
β
k
−1

pEγk,αβ
(
λt

α
k

)])
(x) = x

β+ν
k
−1

∞∑
n=0

p(γ)n,kλ
nΓ
(
α
k
n+ β

k

)
x
α
k
n

pΓk(αn+ β)n!
.

(V.16)
Taking into account (II.11), we put

Γ

(
αn+ β

k

)
=

k

p αn+β
k

pΓk(αn+ β), (V.17)

Γ

(
αn+ β + ν

k

)
=

k

p αn+β+ν
k

pΓk(αn+ β + ν). (V.18)

From from the above considerations we obtain the thesis.
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Corollary 6. If we consider p = k, we obtain(
I
ν
k
0+

[
t
β
k
−1Eγ

k,αβ

(
λt

α
k

)])
(x) = k

ν
kx

β+ν
k
−1Eγ

k,α,β+ν

(
λx

α
k

)
. (V.19)

which coincides with (II.19) from [4].

Corollary 7. If we consider p = k = 1, we obtain(
Iν0+

[
tβ−1Eγ

α,β (λtα)
])

(x) = xβ+ν−1
pEγα,β+ν (λxα) . (V.20)

which coincides with (2.8.11) from [13].

Lemma 3. For λ ∈ R, these holds the formulae.

λx
α
k pEγk,αβ

(
λx

α
x

)
= pEγk,α,β−α

(
λx

α
k

)
− pEγ−kk,α,β−α

(
λx

α
k

)
. (V.21)

Proof. By the definition (III.1), we have, and taking into account the relation
(2.33) from [7],

p(γ)m−1,k =
1

n
p(γ)m,k −

1

m
p(γ − k)m,k, (V.22)

we have

λx
α
k pEγk,αβ

(
λx

α
k

)
=

∞∑
n=0

p(γ)n,k
(
λx

α
k

)n+1

pΓk (αn+ β)n!
(V.23)

=

∞∑
m=1

p(γ)m−1,k
(
λx

α
k

)m
pΓk [α(m− 1) + β] (m− 1)!

(V.24)

=

∞∑
m=0

p(γ)m,k
(
λx

α
k

)m
pΓk (αm− α+ β)m!

−
∞∑
m=0

p(γ − k)m,k
(
λx

α
k

)m
pΓk (αm− α+ β)m!

. (V.25)

Thus, the thesis is obtained.

Corollary 8. If we take ν = k = 1 in Lemma 3, we have

λxα 1Eγ1,αβ (αxα) = λxαEγ
α,β (αxα) = Eγ

α,β−α (αxα)− Eγ
α,β−α (αxα) , (V.26)

result that coincies with the formulae (18) due to Saxena an Saigo in [23].

Theorem 9. Let α > 0, β > 0, γ > 0 and ν > 0. Then

I
ν
k

[
t
β
k
−1

pEγk,α,β
(
t
α
k

)]
(x) = p

ν
kx

β+ν−α
k
−1
[
pEk,αβ+ν−α

(
x
α
k

)
− pEk,α,β+γ−α

(
x
α
k

)]
.

(V.27)

Proof. From (V.12) and (V.21) it result.
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Corollary 9. If k = p = 1 in Theorem 9, we have

Iν
[
tβ−1Eγ

α,β(tα)
]

(x) = xβ+ν−α−1
[
Eα,β+3−α(xα)− Eγ−1

α,β+ν−α(xα)
]
, (V.28)

which coincides with (2.8.14) from [13] and with formulae (19) from [23].

Theorem 10. Let α > 0, β > 0,γ > 0 and ν > 0. Then the Riemann-Liouville
fractional derivative of order ν

k
of the auxiliar functions t

β
k
−1

pEγk,α,β(x
α
k ) is

given by

D
ν
k

[
t
β
k
−1

pEγk,α,β
(
t
α
k

)]
(x) = x

α−ν
k
−1p−

γ
k pEγk,α,β−ν(x

α
k ). (V.29)

Proof.

D
ν
k

[
t
β
k
−1

pEγk,α,β(t
α
k )
]

(x) =

(
d

dx

)m [
1

Γ
(
m− ν

k

) ∫ x

0

t
α
k
n+β

k
+1(x− t)m−

ν
k
−1dt

]
(x)

=
∞∑
n=0

p(γ)n,k

pΓk(αn+ β)n!

1

Γ
(
m− ν

k

) ( d

dx

)m ∫ x

0

t
α
k
n+β

k
+1(x− t)m−

ν
k
−1dt. (V.30)

Through a procedure totally analogous to the one realized in Theorem 1 ,
(V.29) is obtained.

Corollary 10. If p = k = 1, we have

Dν
[
tβ−1Eγ

α,β(zα)
]

(x) = xβ−1−νEγ
β−ν(z

α), (V.31)

which coincides with formulae (2.8.22) from [18], and with (2.1.54) from [14]
and with (29) from [23].

VI Aplication
In this section we give a generalization of the kinetic equation involving the p-k-
Mittag-Leffler function. The first known generalization of the kinetic equation
in the field of Fractional Calculus has been given by Houbold and Mathai in
[12] as follows

N(t)−N0 = −cνIνN(t) (VI.1)

where Iν is the fractional integral operator of Riemann-Liouville.
Several authors have proposed and studied generalizations of this equation,

for example, Saxena and Kalla [24] considered

N (t)−N0 f (t) = −cv IνN(t) (Re (v) > 0) , (VI.2)
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where the function f is integrable over (0,∞).
The kinetic equation has been studied starting from the previous general-

ization and considering different functions f , in particular, special functions
and generalizations of them (see, for example [16], [20], [1], and the references
in them)

In this work we study the following generalization of the kinetic equation

N(t)−N0t
β
k
−1

pEγk,α,β
(
−(ct)

α
k

)
= −c

α
k IαkN(t). (VI.3)

which solution is given by the following

Theorem 11. Let α, β, γ be complex numbers with Re(α) > 0, Re(β) > 0,
Re(γ) > 0; and let p, k, c ∈ R+ \ {0}; then, the solution of VI.3 is given by

N(t) =
c

k
N0

∫ t

0

H1,1
1,2

( c
k

)α
k

(t− τ)
α
k

∣∣∣∣∣∣
(−α

k
, 1)

(−α
k
, 1) (0, α

k
)

 τ βk−1
pEγk,α,β

(
−(cτ)

α
k

)
dτ.

(VI.4)

Proof. Applying the Laplace transform in the right hand member of the VI.3,
using (Laplace transform of the k-Riemann-Liouville fractional integral) and
(III.34) we have

N(S) = N0
s
α
k

s
α
k +

(
c
k

)α
k

k(sp)−
β
k[

1 + p
(
c
ps

)α
k

] γ
k

(VI.5)

To reverse the Laplace transform, let us first note that from [17] p. 152 result

s
α
k

s
α
k +

(
c
k

)α
k

= H1,1
1,1

[(
sk

c

)α
k
∣∣∣∣ (1, 1)

(1, 1)

]
(VI.6)

Then, by formula 2.21 of [18] we have

L−1

{
H1,1

1,1

[(
sk

c

)α
k
∣∣∣∣ (1, 1)

(1, 1)

]}
(t) = t−1H1,1

2,1

[(ct
k

)α
k

]−1 ∣∣∣∣ (1, 1) (0, α
k
)

(1, 1)


(VI.7)

Now, by property 1.58 of [18] it turns out that the right hand member of
VI.7 is equal to

t−1H1,1
1,2

[(
ct

k

)α
k
∣∣∣∣ (0, 1)

(0, 1) (1, α
k
)

]
(VI.8)
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Using property 1.60 of [18], the second member of VI.8 is equal to

c

k
H1,1

1,2

(ct
k

)α
k

∣∣∣∣∣∣
(
− k
α
, 1
)

(
− k
α
, 1
)

(0, α
k
)

 (VI.9)

Finally it turns out that

L−1

{
s
α
k

s
α
k +

(
c
k

)α
k

}
(t) =

c

k
H1,1

1,2

(ct
k

)α
k

∣∣∣∣∣∣
(
− k
α
, 1
)

(
− k
α
, 1
)

(0, α
k
)

 (VI.10)

and then returning to the equation (VI.5) and using the convolution theo-
rem of Laplace transform has the expected result.
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