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Abstract

The Vickers microhardness of TiO, is calculated using elastic properties obtained by first principles calculations combined with Discrete Elements
Method (DEM). The calculation is carried out in rutile and cotunnite phases. It was found that rutile phase, has a microhardness of 8.6 GPa
and 12.8 GPa for the failure and fracture modes in agreement with experimental results range. In cotunnite phase the hardness for failure and
fracture mode are 24.1 and 24.4 GPa, close to 26 GPa, applying Simunek model. To give insight to this methodology, the calculation is extended
to SnO; in the normal phase. The microhardness value obtained in the failure mode is 2.67 GPa. The method developed here, to obtain the Vickers
microhardness, could be applied to a systematic study of tailoring materials. Since hardness is related to elastic shear properties, our results can be
used as an assessment of the material properties as solid lubricating at first order.

© 2014 Elsevier Ltd. All rights reserved.
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1. Introduction

TiO, represents a typical anisotropic elastic material. Some
manufacturing processes require micromechanical modeling of
materials in terms of single crystal for custom tailoring new com-
posite materials. Moreover, the study of the relative stability of
the phases and their elastic properties are well motivated by,
for example, the understanding about the chemical bonds and
the cohesion of the material. Hardness, defined as the material
resistance to localized deformation, is an important mechanic
property of materials. Hard materials have many industrial appli-
cations wherever resistance to abrasion and wear are important.
The experimental data for a wide variety of materials shows that
the shear modulus, which measures the material’s resistance to
shape change, is correlated to hardness. In order to deduce a

* Corresponding author. Fax: +54 3624428106.
E-mail addresses: mac@ing.unne.edu.ar, mariacaravaca_ar@hotmail.com
(ML.A. Caravaca).

http://dx.doi.org/10.1016/j.jeurceramsoc.2014.06.022
0955-2219/© 2014 Elsevier Ltd. All rights reserved.

computational scheme for simulating hard materials, the shear
modulus associated with the various slip systems encountered in
crystalline structures are expressed, for the first time, by means
of the microscopic parameters of the chemical bonds, in the
framework of the density functional theory.' Accurate exper-
imental determinations of elastic constants require the use of
large pure single crystals which, in the case of many ceramics,
are difficult to obtain. Thus ab initio theoretical studies which
provide elastic properties of single and poly-crystals could be
substantial contributions.

The discovery of cotunnite, orthorhombic OII phase, stabi-
lized at 60 GPa, that was able to be held at 77 K and normal
pressure with a clean, flat surface on which indentation hard-
ness measurements were performed is constructed as evidence
of a material that could be classified as superhard, although this
is not devoid of controversy.

Dubrovinsky et al.* made measurements to determine the
microhardness Vickers using nine indentations. They reported
values in the range 36.8—40.7 GPa, results independent of the
load.
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Recent studies have shown that hardness, a complex prop-
erty, can be calculated using very simple approaches or even
analytical formulas. These model approaches can help to reap-
praise controversial experimental results as shown by Oganov
and Lyakhov.>-°

Based on the idea that the hardness of covalent crystal is
intrinsic and equivalent to the sum of the resistance to the inden-
ter of each bond per unit area, a semi-empirical method for
the evaluation of hardness of multicomponent crystals was pre-
sented by Gao et al.” They found that bond density or electronic
density, bond length, and degree of covalent bonding are three
determinative factors for the hardness of a polar covalent crys-
tal. This method initializes a link between macroscopic property
and electronic structure from first principles calculation.

By other hand, the widely applied Teter’s® empirical correla-
tion between hardness and shear modulus has been considered
to be not always valid for a large variety of materials. The main
reason is that shear modulus only responses to elastic defor-
mation whereas the hardness links both elastic and permanent
plastic properties.

Chen et al.” found an intrinsic correlation between hardness
and elasticity of materials that correctly predicts Vickers hard-
ness for a wide variety of crystalline materials as well as bulk
metallic glasses (BMGs) if the material is intrinsically brittle.
Their results demostrate that the hardness of polycrystalline
materials can be correlated with the product of the squared
Pugh’s modulus ratio k = G/B and the shear modulus. Itis capable
to correctly predict the hardness of all hard compounds known.

The theoretical hardness of crystals can be estimated from
the semi-empirical theory. For instance, by mean of the method
proposed by Simunek'” and coworkers.

Zhou et al.'' gave an interesting model based on the fact
that both hardness and vibrational Raman spectrum depend
on the intrinsic property of chemical bonds. They propose a
new theoretical model to predict hardness of a covalent crystal.
The quantitative relationship between hardness and vibrational
Raman frequencies deduced from the typical zinc-blenda cova-
lent crystals is validated to be also applicable for the complex
multi component crystals. This model enables to characterize,
non-destructively and indirectly, the hardness of novel super
hard materials synthesized under ultra-high pressure condition
with the in situ Raman spectrum measurement.

The prediction of hardness in the normal phases, which are
well established for the elastic properties of rutile phase, helps
to discern the predictive power of calculation in this type of
oxides. Then it can be applied to cases where direct measurement
of the elastic properties is not accessible and in those where a
systematic search of new solid lubricants is required.

High pressure studies of materials are often tricky, and the
field of high-pressure research is full of both exciting discov-
eries and miss discoveries. For instance, it has been claimed®*
that TiO—cotunnite, quenched from high pressure, where the
samples, as a consequence of performing the experiment in an
electrically-heated DAC are cylindrical in shape, is the hardest
known oxide with a Vickers hardness of 38 GPa, but this claim
has been hotly debated.

It is difficult to experimentally appraise such results obtained
on tiny samples given that indentation size effect is one of the
several size effects on strength for which “smaller is stronger”, as
found by Pharr'? that the size effect is manifested as an increase
in hardness with decreasing depth of penetration and becomes
important at depth of less than approximately 1 wm. Further-
more at lower level of the load in microhardness indentation
test results in a higher apparent micro-hardness. This is known
as the indentation load/size effects (ISE) and this load depend-
ence of hardness has been traditionally described through the
application of Meyer law.'?

This indentation load/size effects on the microhardness has
been considered on the basis of a variety of phenomena: work
hardening during the indentation; the load to initiate plastic
deformation; the activation energy for dislocation nucleation
and more. The cause of this effect for two rutile structure single
crystal, TiO, and SnO; has been achieved, applying Hays and
Kendall approach'* in the examination of Knoop indentation
measurements.'> They have shown that ISE is a consequence
of the indentation-size which is proportional to the resistance
of the test specimen to the plastic deformation. This implies
the existence of a minimum level of the indentation test load,
below which plastic deformation does not initiate, but only elas-
tic deformation occurs. Then the experimental indentation size
measurements are not directly related to the load applied but
rather to effective indentation test load (P-W) where W is the
material resistance to the initiation of plastic flow.

The theoretical models could help to distinguish facts from
artefacts in the experimental results. In the models presented
by Organov,” the hardness of TiO, cotunnite varies in the
range 7-20 GPa. Based on the extended model,” was found to
be 15.9 GPa, softer than common corundum, Al,O3 (21 GPa),
stishovite SiO; (33 GPa),'¢ or BsO (45 GPa).!” The low hard-
ness of TiO—cotunnite is due to the non-depicted bond iconicity
and high coordination number of Ti (nine-fold), i.e. relatively
weak and non-directional Ti—-O bonds. Moreover, the pro-
nounced anisotropy and the fact that shear elastic constants are
relatively weak compared to the axial ones,'® could suggest that
ultra hard TiOy—cotunnite is the result of enhancements of the
surface resistance to the initiation of plastic deformation due
to the pressurized processes, and not natural resistance to the
localized deformations. This could be discerned if a measure-
ment of dynamic hardness is done and shown the portion that
corresponds to both plastic and elastic indentation work.

While the connection between the hardness and elastic prop-
erties is beyond doubt, it is complex to solve the analytical
problem of penetration of an indenter. The current status of var-
ious theoretical approaches given the “prediction” of material
hardness has been reviewed by Tse.!” It is shown that the simple
empirical correlation with the shear modulus generally provide
good estimates of the Vickers hardness. Semi-empirical mod-
els based solely on the strength of chemical bonds, although
performed as well, are theoretically incomplete. First-principles
calculations of the elastic constant and derived properties like
shear strength is perhaps the most reliable theoretical approach
to compare with experiment results.
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In this work, microscopic first-principles calculations and
numerical methods, based on fracture mechanics, are combined
to give a new hardness values for TiO; in the controversial
cotunnite phases. Given that rutile TiO; is a technologically
important material in heterogeneous catalysis, as a pigment and
as an opacifier, our calculation includes elastic properties and
hardness in the normal phase rutile.

On the other hand, tin dioxide (SnO;) is an industrially impor-
tant material which is used in numerous applications where the
specific electrical, optical and mechanical properties of SnO;
are highly desirable.

For example, SnO» is used extensively as the active material
in gas sensors,”’>? as well as in systems where optical or electri-
cal coatings are required, such as in low-emissivity architectural
glass solar cells,”* and liquid crystal displays.”

Moreover, SnO; undergoes a structural transition to Pnmn
phase at 12GPa but the transition pressure is reduced to
lower value by one order of magnitude, when a residual non-
hydrostatic pressure is present.”® This material has a phase
diagram whose order under pressure is consistent with the dia-
gram of SiO, (at very high pressures).”’ Consequently SnO
is a prototype for the study of transformations and elastic
anisotropies of the SiO; at laboratory scale, the largest compo-
nent of the earth’s crust, given that there is a complete analogy
to the sequence of the phase transformations experienced by
the tin oxide. Thus an indirect study of the SiO; is possible
and very useful, because the high pressures involved in the
silica phase-transitions would not be achievable at laboratory
scale.

We apply first-principles method to obtain the elastic
constants in single crystal of TiO, and SnO; and derivatives
properties in the polycrystalline approach. To determine the
microhardness Vickers (Hy), we use a numerical truss-like
Discrete Element Method (DEM). This requires a parameter
representing a maximum tensile strength, among others. In this
work, it is obtained from the strain-stress relationship for the
weakness Cy4 elastic constants calculation. The indentation pro-
cedure applied in DEM is similar to that used to obtain the
hardness in Al,03.%

2. Methods
2.1. First-principle method

The study of the structure and elastic properties of TiOy
and SnO; was carried out with the SIESTA ab initio method.”
This code is shown to give a good description of the structural
and elastic properties of Hf oxides and their polymorphisms,*’
as well as TiO, in rutile and cotunnite phases'® and recently
Sn0,.%!

SIESTA code has been developed and implemented in a
self-consistent Density Functional Theory (DFT) scheme using
standard norm-conserving pseudo-potentials and a flexible,
numeric linear combination of atomic orbital basis set, which
includes multiple-zeta and polarization orbitals.

Exchange and correlation are treated with the local density
approximations. The basis functions and the electron density are

projected on a real-space grid in order to calculate the Hartree
and exchange-correlation potentials. Forces and stresses are also
calculated efficiently and accurately, thus allowing structural
relaxation and molecular dynamics simulations.

The Bravais lattice in rutile (Fig. 1a) and cotunnite phases
(Fig. 1b) are defined by the vectors: (a, a, ¢) and (a, b, c) respec-
tively. The equilibrium lattice and elastic properties of TiO; used
here were studied in detail in converged calculations.'® Apply-
ing to the equilibrium lattice small deformations through the
matrix D according to the symmetry of the crystal, the stress
tensor for TiO; and SnO» in rutile phases was obtained. Fitting
the results to Hooke’s law, the elastic constants are obtained
and the directional Young’s modulus can be constructed. The
maximum strength is approximated to the higher value of shear
stress obtained from the stress—strain relationship related to the
C44 (Css). This is due to the Vickers hardness imprint is mea-
sured on the crystallographic plane (110)*>% and the tip of
indenter exerts the stress in (0 1 1) and (1 0 1) crystalline plane.
Respect to the polycrystalline description of the mean values
of elastic properties, the Voigt—Reuss—Hill (VRH) approach is
applied to the oxides studied here.

2.2. Truss-like Discrete Element Method

The Discrete Element Method (DEM) was originally devel-
oped by Cundall et al.** to solve rock mechanics. Today, it
is widely accepted as an effective method of addressing engi-
neering problems in granular and discontinuous materials. The
version of the truss-like Discrete Element Method (DEM) pro-
posed by Riera® in 1984 employed in this paper consists of
treating a continuous medium as regular repetition of discrete
basic units*® (Fig. 2).

The rigidity of the represented truss bars are equivalent to the
continuum that is being represented. Since they are considered
as spatial truss bars, each node accounts for three degrees of
freedom. The mass of the model is made discrete and concen-
trated on the nodes of the mentioned unit in a way to reproduce
the trial density of mass of the system.

A uniaxial relation between the axial forces vs. strain for
the bars following the bilinear softening law, proposed by
Hillerborg,’” was adopted for the representation of material.
This law, shown in Fig. 3, allows accounting for the irreversible
effects of crack nucleation and propagation. In Fig. 3, P, repre-
sents the maximum tensile force transmitted by the bar, and ¢,
is the deformation (strain) associated with P,.

Ej4 is the cubic model bar rigidity, equal to the product of
the material Young Modulus, E, by the cross sectional area of
the element A.> This verify that P, = &p. Ea, k- is the ductility,
by which the strain at the bar no longer transmit tensile force,
Er

The deformation limit &, is chosen to meet the condition
that when an element fails and cracks opens, certain amount
of energy (Gy) is released. The general relationship between ¢,
and Gy was established as a condition for traction failure and its
deduction is based on the Mechanics of Linear Elastic Fracture
Egs. (1) and (2).
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Fig. 1. TiO; in (a) rutile and (b) Pnma phases (plane 1 10).

Z

(b)
A

X

Fig. 2. (a) DEM basic cubic module, (b) modules composing the prism.

This fracture energy is

(&)

This equation tells us that under smaller plasticity condition
the propagation of the crack is controlled by G or Ky. It is neces-
sary to maintain the plane strain condition with little plasticity

1—2

G,=K3 )
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that the crack does not exceed the size of the plastic zone on the
edge of the crack (more details in Supplementary page).

Kf=o-7'%.4'? )
The bar stress is
O'Z)('Per=X"’5p'EA 3)

where yx is a geometry-dependent parameter.
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a
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Fig. 3. Relationship of the bars in the elemental cubic arrangements. (a) Constitutive diagram with control parameters; (b) load and unload scheme.?'
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Fig. 4. Load process at 2.0 x 1077 seg.

Applying (2) and (3) in Eq. (1)
1/2
Gy /

=R |— 2
Ep f (1—1)2)-EA

“

where Ry = Xul—,/z is the failure factor.

In Fig. 3 Ay is the effective area where the bar action is
distributed.*® As was defined early, the ductility in DEM is rep-
resented by &, and it can approximate to the ratio between L,
to the length at which the failure occurs. L. is the basic cubic
module length (Fig. 2a).
k= Lo

L,

The ideal condition of fragile system is k. value equal or
greater than 1. It is important to note that the bar has a linear
elastic behavior, with a breakdown of the global model, when
compressed by indirect tensile (Poisson effect). A restriction
to the Poisson Modulus value to v=0.25 must be imposed to
achieve an agreement between the cubic arrangement and the
represented elastic solid. For other values of v, certain discrep-
ancies appear in terms of shear, but become negligible when
interest is put upon the non-linear result of the studied system.

Since the values of Gy, ¢, and E4 are input data that we have,
the value of k, is affected by L.,. The step increment time (Af)

d2

136°

~y =

Fig. 5. Permanent impression by the indentator.

in the dynamic simulation must be less than the critical one. In
our case the critical value of 1.45 x 10~!! seg, is obtained in
terms of the mass density, elasticity modulus and indicates the
time when an elastic waves passes through a bar element. Ry can
be also calculated as a function of &, and L.. When values for
the other variables are defined, the value of L. is fixed. Detailed
description is found in Refs. 38, 39. The toughness value, neces-
sary for this modelling cannot be obtained by our calculations.
Literature values would be employed.*”

2.2.1. Measuring hardness with DEM.

It is essential to model the “strain-softening” effect for a
correct representation of the phenomenon of rupture in a brit-
tle material. The softening (“strain-softening”) present in the
adopted diagram (Fig. 3) aims to put a condition on the amount
of energy to be consumed in breaking the material.

For numerical simulation of the hardness in the tetragonal
phase (P42/nmc) and orthorhombic ones (Pnma), the values of
the parameters used by the DEM, are derivatives of the elastic
constants obtained from ab initio calculations. The simulated
material is originally orthotropic, but DEM approximation
imposes, to the determination of the hardness, that an isotropic
material to be rendered. In an isotropic material, constant Cj;
depends on Young’s modulus (£) and Poisson’s ratio. For
provide to DEM a representative E, we calculated first the
averaged uniaxial elastic constants of C1; Cyy C33 obtained from
ab initio calculations. This mean value is considered “Cy;” in

0,0030 — — =
Fracture 48
- Y s '
0,0025 - Fail L s § 36 —/
¥ 2w
0,0020 3 T
—_ 18
o =
0,0015 e
= w06
[2] 0,0 T T r T
g 0.0010 4 0,0 05 9 15 20 25 34
5 ] “Time (10”9 seg)
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0,0000 - ]
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0,6 0,9 1,2 1,5 1,8 21 24 2,7
Time (10°seg)

Fig. 6. Damage energy curve (inset) at the time in which the fail occurs in the
stress—time function.
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Table 1
Calculated elastic constant values of rutile TiO, compared to availble experimental data. All units of C;; are in GPa.
Elastic Constant TiO,

Rutile Pnma

Siesta Th.*! Exp.® Exp.*0 Exp.*’ Siesta Th.*? Th.*?
Ci 340 366 268 273 266 688 555 563
Cxn 510 408 645
Cs3 470 606 484 484 470 649 450 782
Ci2 143 225 175 178 173 258 234 330
Ci3 154 224 147 149 136 240 237 254
Cx 253 196 343
Cuys 181 189 124 125 128 129 89 231
Css 133 109 203
Ces 204 272 190 194 188 204 159 254
Table 2

Calculated elastic constant values of rutile SnO, compared to available experi-
mental data. All units of Cj; are in GPa.

Elastic Constant SnO,

Rutile

Siesta’! Th.* Exp.** Th.*8
Cyy 261 267 262 261
Cs3 483 471 450 472
Ci 211 179 177 180
Ci3 161 150 155 150
Cyq 107 108 103 109
Ces 232 222 207 223

DEM constitutive matrix>> and E is then adjusted to be E4. The
values of the Constitutive Elementary Relation (CER) ¢, (£44)
and E4 (E) would be fitted as well as possible to the maximum
strength value 044 obtained through ab initio calculations. The
toughness value, necessary for this modeling cannot be obtained
by our calculations. Literature values would be employed.*

In DEM modelling, the critical length of the bars and the Pois-
son ratio are 2.00 x 10~7 mand 0.25 respectively. The parameter
82 which linearize the elastic constants for the model of bar

Table 3

employed by DEM, is 1.125. This value is kept constant in all
calculations.

In order to make DEM convergence better, values greater
than 1 are applied to ductility k,. The method can describe the
hardness in different modes: the failure and fracture mode. The
failure mode refers to the moment, in the simulation, in which
the bar “fails”, interpreted in the sense that the damage energy
(Fig. 6) becomes different to zero.

The fracture of the material corresponds to the instant in
which the global model stress—time curve has a constant path
and the first break on damage energy curve appears (Fig. 6). At
this point, the deformation value is ¢ = ¢,, at which the bar no
longer transmits energy.

The indentation process consists of two steps: loading (apply-
ing maximum load for a few seconds) and unloading (see Fig. 4).

After this process, the permanent impression left by the
indenture is measured (Fig. 5) and Hy is calculated using Eq.

(5).
136°

2-F-sen

Hy = 7

~ 1854 F
N e (5)

_dl+d2
2

d

Calculated thermo-elastic and acoustic properties of polycrystalline TiO; using VRH approach, compared with available theoretical and experimental data. Ey, v, V,
Vi, Vin, p, and 0p are the Young modulus, Poisson constant, transverse, longitudinal and averaged speed of sound, mass density and Debye temperature, respectively.

Polycrystalline properties TiOy
Rutile Pnma
Siesta Exp.* Exp.*0 Siesta Th.*? Exp
Bo (GPa) 225 228 216 370 301 312(34)%0
306(9)°!
431(10)*
Go (GPa) 154 115 127 162 119
Eo (GPa) 376 285% 318 425 314°
v 0.22 0.28° 0.25 0.31 0.33¢
V; (m/seg) 5999 5119¢ 4261 5436 4647
Vi 10,031 9214% 7421 10,327 9145%
Vin (th.) 6639 5702% 4733 6078 5208
p (kg/m?) 4280 4260° 6990 5490 5490
Op (k) 933 893 615 775% 775%

2 Calculated here with VRH approach.
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Fig. 7. Young modulus anisotropy for (a) rutile (left), (b) cotunnite (right) structures.

Table 4

Calculated thermo-elastic and acoustic properties of polycrystalline SnO, using
VRH approach, compared with available theoretical and experimental data. E,
v, Vi, Vi, Viu, p, and 6p are the Young modulus, Poisson constant, transverse,
longitudinal and averaged speed of sound, mass density and Debye temperature,
respectively.

Polycrystalline properties SnO;

Siesta’! Exp.*’ Th.*
Bo (GPa) 225 2124 213
Go (GPa) 96 115% 106
Ey (GPa) 253 2944 -
v 0.31 0.27¢ -
V; (m/seg) 3707 4072¢ 3840
Vi 7167 72434 7002
Vi (th.) 4150 45314 -
p (kg/m®) 6990 -
Op (k) 542 742° 565

2 Calculated here with VRH approach.
3. Results
3.1. Elastic properties of single crystal and polycrystal

Tables 1 and 2 show the calculated elastic constants for
rutile and cotunnite phases of TiO; and rutile SnO, respec-
tively where available theoretical*'~***7 and experimental***°
data are included for comparison. Tables 3 and 4 show thermo-
acoustic properties in the polycrystalline approximation using
VRH approach, with data taken from Tables | and 2. These
B, G values are introduced in the Chen model’ to obtain, the
compound hardness to be compared with DEM results.

In Fig. 7a and b, anisotropic Young modulus in single crystals
is shown, obtained from the elastic constants in cotunnite and
rutile phase at normal pressure.

As was mentioned, the maximum strength value for param-
eterizing DEM is chosen to be the higher shear stress o44. An
example is shown for the cotunnite phase in Fig. 8.

3.1.1. Microhardness Vickers
3.1.1.1. TiO; in the rutile phase. TiO, in the rutile phase

(Fig. 1a), has a density of 4280 kg/m>. To parameterize DEM
method, the maximum strength o, as was mentioned, is

12 . ;

Ti0; C,)

__ 8- \_
®©
o J
O]
— 64 .
©
(2
[%2]
7]
24 .
0 T T T
0,00 0,05 0,10 0,15 0,20

Fig. 8. Stress-strain relationship. For the calculation of Cs4 linear regime is
used. The maximum value is considered as a 0 by DEM.

obtained from the stress—strain relationship for the weakest of
the calculated elastic constants C44. The highest 044 value found
in rutile is 2.7 GPa. To include the fracture propagation velocity
in DEM, the 60% of the mean sound velocity obtained from the
VRH approach, was considered.

In order to build the isotropic constitutive matrix used in
DEM, its first three upper diagonal elements were replaced with
the average of the crystal axial values C11, C2; and C33 (Table 1).
This mean value is equal to 380 GPa and named as “Ci;” in
equations quoted in Ref. 52. Given C1; we obtained the E4 value
and from the second equation of Ref., 52 Ci3 (Ca4). It should
be noted that E4 now turn out to be slightly higher (0.09%)
than that E obtained with the VRH approximation (376 GPa).’!
The microhardness Vickers Hy in failure mode is 8.64 GPa and
in the fracture mode is 12.28 GPa. Hardness Hy in the failure
mode has a small variation with respect to toughness for the
range between 1.60 and 2.0 MPam®> (Fig. 9). In this phase
our results are in agreement with the experimental range values
8.2-12.8 GPa (Table 5) of Hy.

Applying other theoretical models for the calculation of Hy,
for instance the Chen et al. model” and using experimental data
for G and B** results Hy between 11.4 and 15.3 GPa. With the
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Table 5

Calculated hardness values for TiO; and SnO; and their comparison with different published models. Here Gy, k., o, Hy means fracture energy, the ductility in DEM, the maximum strength and Vickers hardness,

respectively. See also our previous calculations in Ref. 51.

Model

Exp.

K, o (GPa) Hy (Gpa)
DEM

Gy (N/m)

Toughness
(MPam®~)

Phases

Zhou

Chen

Gao

Fracture

Failure

&3()2

11.4%8

9.12

8.2-12.8%

8.64 12.28
11.932

2.70

11.31 1.5

1.6

Rutile

TiO,

llll
]21\
5.757,b

a

20

38*

24.21

24.08

8.0

3.98

4.0

Cotunnite

1541

1 663

12.73!

8.19¢

3.68°7!

2.67

0.78

22.7

15.28

1.8

Rutile

SnO,

7.7%

2 Calculated using results from SIESTA-LDA.

b Calculated with GGA.
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Fig. 9. Hardness—toughness relationship for rutile structure in DEM calculation.

Gao model,’ Hy =9.1 GPa. Using the proposal by Zhou et al.,'!
where was included from the Raman spectra by Nicol et al.” the
frequencies and the intensities relative to 720 cm™ !, the hardness
is 8.3 GPa. All this results, shown in Table 5, are in general
agreement with our model, and with the experimental mentioned
range.

3.1.2. High pressure phase orthorhombic TiO»

TiO, in the cotunnite phase (Fig. 1b), has a density of
5494 kg/m>. The maximum strength omax, in this phase is
obtained again from the stress—strain relationship, c44—€44
(see Fig. 8). The highest 044 (omax) value found is 8 GPa.
As it mentioned earlier, “Cj;” value of 616 GPa is obtained
from the average of our calculated axial elastic constants. The
relationships”> provide the E4 value 513 GPa, 15% higher than
the value given by VRH polycrystalline approach (E = 425 GPa).
The remaining C17 (Ca4) was determined using a Poisson’s coef-
ficient of 0.25.°” The toughness for this high density phase is
unknown. It is here approached, in a range of values between
2.77 MPam®?> (A1203)40 and 6.6 MPam®?, found in ZrO, sta-
bilized with CeQ,. In the TiO; orthorhombic phase the Hy value
is 24.08 GPa in failure mode and does not depend on toughness.
In the fracture mode, hardness has very small variation with
respect to toughness: for values between 4.0 and 5.5 MPam®-,
the hardness Hy was found to lie between 24.21 and 24.41 GPa.

The difference found between the theoretical predictions and
experimental results could be explained based on the indenta-
tion load/size effect (ISE). This effect is found in microhardness
measurements in single crystal at precisely two structures of
rutile TiO,, SnO,."> ISE is explained on the basis of the work
hardening during indentation®*>* and the activation energy for
nucleation of dislocations.” But according to Kendall-Hays
approximation of ISE, there is a minimum level of indentation
load (W) below which plastic deformation does not initiate, but
only elastic deformation occurs. In a study by Li and Bradt'> on
a number of hardness measurements in single crystals of SnO;
and TiO; was found that these minimum levels depend on the
surface crystallographic orientation. Taking the average of their
published results (Table 2 of Ref. 15), we obtain in the case of
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rutile-TiO;, a load (W) equal of 22 g. If the hardness measure-
ments of Dubrovinsky et al., using loads in the range 25-300 g
in samples of cotunnite-type TiO, recovered cryogenically at
77K, are corrected with this minimum load, the resulting H,
is found>® to be about 31 GPa, in fair agreement with our pre-
dictions based on the elastic properties of cotunnite TiO,. To
compare with other theoretical models, we also estimated the
hardness using the model of Chen’ where the B and G moduli
are calculated applying VRH approach to the elastic constants
obtained with SIESTA. The Hy is 11.9 GPa. A recent calcula-
tion using CASTEP method”’ together with the Simunek et al.
model,'” gives Hy =26.05 GPa in good agreement with our pre-
diction. Applying the Gao model, we found a value of 20 GPa.
If our 044 is replaced in the Lazar et al.’® prescription, in which
the hardness of an intrinsically brittle material, is related to the
minimum critical stress for brittle cleavage o ¢ min, the hardness
results in 8 GPa. Unfortunately it is not possible to compare with
Zhou model since there is not available measurement of Raman
spectrum in cotunnite TiO». It could be desirable to dispose of
a Raman spectrum in this high pressure phase.

3.1.3. SnO; in the semiconductor rutile phase

Tin oxide represents a semiconductor with a wide band gap
and with a covalent character of the bond. In this tetragonal
phase (Fig. 8), the density is 6990 kg/m?>. The calculated elastic
constants from ab intio method are used to obtain the average
matrix elements as was done in TiO», setting “C1;” to 306 GPa
(Table 1— SnO»). Applying the equation’” a value E4 =255 GPa
is found. The remaining matrix elements for Ciy (Cs4) are
determined, as was mentioned. The microhardness Vickers was
calculated to be 2.67 GPa, only in failure mode because the frac-
ture mode does not satisfy the DEM condition shown in Fig. 6.
This is 27% less than the more recently experimental value of
387 Hy (3.68 GPa) found by Ouni et al. 32 The hardness cal-
culated with Chen model using the B and G moduli obtained
with SIESTA, is 7.7 GPa, but if the experimental values are used
instead,” the hardness is 12.7 GPa (see Table 5). If the ¢ min
is approximated to 044, in the Lazar prescription, gives us a
hardness of 0.7 GPa. If the Gao model is parameterized with the
data obtained with SIESTA, the hardness is 8.1 GPa. Fitting the
Zhou model with the published SnO; Raman spectrum’”-%* the
resulting Hy is 16 GPa.

4. Conclusions

We have found that the elastic properties obtained from ab
initio calculations combined with DEM can be used for pre-
dicting micro Vickers hardness in oxide materials with a wide
range of hardness. Their values for rutile TiO, is 8.6 GPa in
the fail model and 12.28 GPa in the fracture model. These com-
pare well with available experimental Hy =11 GPa obtained at
25 °C. In this phase,the results provided by the models of Chen,
Gao, Zhou, are in general agreement with our assessments. In
the case of TiO; in cotunnite phase, the predicted micro Vickers
hardness are 24.08 and 24.41 GPa for the fail and fracture modes
respectively, which are in agreement (26 GPa) with very recently
theoretical ab initio assessment using the Simunek model. Other

estimations using Chen, Gao, and Lazar models provide even
lower hardness values for the cotunnite phase.

For SnO; in the normal rutile phase, the hardness is, in
the failure mode, 2.67 GPa, lower than experimental value of
3.68 GPa. For this phase the Chen, Gao and Zhou models provide
even higher value Hy, greater than 8 GPa.

All this evidence, suggest the needs of new experimental
research applied to these oxide phases. Especially since experi-
mental microhardness data of TiO; and SnO; in single crystals,
show the importance of critical load of the plastic flow initiation
(W). It is noted that this magnitude is significant when compared
with the indentation test loads applied.

This work uses a scheme of continuous elasticity theory that
employs empirical parameters which is applied in the field of
the mechanics of failure and fracture. In our case, we show that
the method is able to predict the hardness, if parameterized with
converged values obtained from ab initio quantum-mechanical
calculations.

Then our methodology to obtain the microhardness could be
applied to a systematic study of tailoring material. Since hard-
ness is often related to shear elastic properties, our results can be
used as a first order assessment of the solid material lubricating
properties.

Appendix A. Supplementary data

Supplementary data associated with this article can be
found, in the online version, at http://dx.doi.org/10.1016/].
jeurceramsoc.2014.06.022.
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