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bstract

he Vickers microhardness of TiO2 is calculated using elastic properties obtained by first principles calculations combined with Discrete Elements
ethod (DEM). The calculation is carried out in rutile and cotunnite phases. It was found that rutile phase, has a microhardness of 8.6 GPa

nd 12.8 GPa for the failure and fracture modes in agreement with experimental results range. In cotunnite phase the hardness for failure and
racture mode are 24.1 and 24.4 GPa, close to 26 GPa, applying Simunek model. To give insight to this methodology, the calculation is extended
o SnO2 in the normal phase. The microhardness value obtained in the failure mode is 2.67 GPa. The method developed here, to obtain the Vickers
icrohardness, could be applied to a systematic study of tailoring materials. Since hardness is related to elastic shear properties, our results can be
sed as an assessment of the material properties as solid lubricating at first order.

2014 Elsevier Ltd. All rights reserved.
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. Introduction

TiO2 represents a typical anisotropic elastic material. Some
anufacturing processes require micromechanical modeling of
aterials in terms of single crystal for custom tailoring new com-

osite materials. Moreover, the study of the relative stability of
he phases and their elastic properties are well motivated by,
or example, the understanding about the chemical bonds and
he cohesion of the material. Hardness, defined as the material
esistance to localized deformation, is an important mechanic
roperty of materials. Hard materials have many industrial appli-
ations wherever resistance to abrasion and wear are important.

he experimental data for a wide variety of materials shows that

he shear modulus, which measures the material’s resistance to
hape change, is correlated to hardness. In order to deduce a
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omputational scheme for simulating hard materials, the shear
odulus associated with the various slip systems encountered in

rystalline structures are expressed, for the first time, by means
f the microscopic parameters of the chemical bonds, in the
ramework of the density functional theory.1–3 Accurate exper-
mental determinations of elastic constants require the use of
arge pure single crystals which, in the case of many ceramics,
re difficult to obtain. Thus ab initio theoretical studies which
rovide elastic properties of single and poly-crystals could be
ubstantial contributions.

The discovery of cotunnite, orthorhombic OII phase, stabi-
ized at 60 GPa, that was able to be held at 77 K and normal
ressure with a clean, flat surface on which indentation hard-
ess measurements were performed is constructed as evidence
f a material that could be classified as superhard, although this
s not devoid of controversy.

Dubrovinsky et al.4 made measurements to determine the

icrohardness Vickers using nine indentations. They reported

alues in the range 36.8–40.7 GPa, results independent of the
oad.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jeurceramsoc.2014.06.022&domain=pdf
http://www.sciencedirect.com/science/journal/09552219
dx.doi.org/10.1016/j.jeurceramsoc.2014.06.022
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Recent studies have shown that hardness, a complex prop-
rty, can be calculated using very simple approaches or even
nalytical formulas. These model approaches can help to reap-
raise controversial experimental results as shown by Oganov
nd Lyakhov.5,6

Based on the idea that the hardness of covalent crystal is
ntrinsic and equivalent to the sum of the resistance to the inden-
er of each bond per unit area, a semi-empirical method for
he evaluation of hardness of multicomponent crystals was pre-
ented by Gao et al.7 They found that bond density or electronic
ensity, bond length, and degree of covalent bonding are three
eterminative factors for the hardness of a polar covalent crys-
al. This method initializes a link between macroscopic property
nd electronic structure from first principles calculation.

By other hand, the widely applied Teter’s8 empirical correla-
ion between hardness and shear modulus has been considered
o be not always valid for a large variety of materials. The main
eason is that shear modulus only responses to elastic defor-
ation whereas the hardness links both elastic and permanent

lastic properties.
Chen et al.9 found an intrinsic correlation between hardness

nd elasticity of materials that correctly predicts Vickers hard-
ess for a wide variety of crystalline materials as well as bulk
etallic glasses (BMGs) if the material is intrinsically brittle.
heir results demostrate that the hardness of polycrystalline
aterials can be correlated with the product of the squared
ugh’s modulus ratio k = G/B and the shear modulus. It is capable

o correctly predict the hardness of all hard compounds known.
The theoretical hardness of crystals can be estimated from

he semi-empirical theory. For instance, by mean of the method
roposed by Simunek10 and coworkers.

Zhou et al.11 gave an interesting model based on the fact
hat both hardness and vibrational Raman spectrum depend
n the intrinsic property of chemical bonds. They propose a
ew theoretical model to predict hardness of a covalent crystal.
he quantitative relationship between hardness and vibrational
aman frequencies deduced from the typical zinc-blenda cova-

ent crystals is validated to be also applicable for the complex
ulti component crystals. This model enables to characterize,

on-destructively and indirectly, the hardness of novel super
ard materials synthesized under ultra-high pressure condition
ith the in situ Raman spectrum measurement.
The prediction of hardness in the normal phases, which are

ell established for the elastic properties of rutile phase, helps
o discern the predictive power of calculation in this type of
xides. Then it can be applied to cases where direct measurement
f the elastic properties is not accessible and in those where a
ystematic search of new solid lubricants is required.

High pressure studies of materials are often tricky, and the
eld of high-pressure research is full of both exciting discov-
ries and miss discoveries. For instance, it has been claimed4

hat TiO2–cotunnite, quenched from high pressure, where the
amples, as a consequence of performing the experiment in an

lectrically-heated DAC are cylindrical in shape, is the hardest
nown oxide with a Vickers hardness of 38 GPa, but this claim
as been hotly debated.
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It is difficult to experimentally appraise such results obtained
n tiny samples given that indentation size effect is one of the
everal size effects on strength for which “smaller is stronger”, as
ound by Pharr12 that the size effect is manifested as an increase
n hardness with decreasing depth of penetration and becomes
mportant at depth of less than approximately 1 �m. Further-

ore at lower level of the load in microhardness indentation
est results in a higher apparent micro-hardness. This is known
s the indentation load/size effects (ISE) and this load depend-
nce of hardness has been traditionally described through the
pplication of Meyer law.13

This indentation load/size effects on the microhardness has
een considered on the basis of a variety of phenomena: work
ardening during the indentation; the load to initiate plastic
eformation; the activation energy for dislocation nucleation
nd more. The cause of this effect for two rutile structure single
rystal, TiO2 and SnO2 has been achieved, applying Hays and
endall approach14 in the examination of Knoop indentation
easurements.15 They have shown that ISE is a consequence

f the indentation-size which is proportional to the resistance
f the test specimen to the plastic deformation. This implies
he existence of a minimum level of the indentation test load,
elow which plastic deformation does not initiate, but only elas-
ic deformation occurs. Then the experimental indentation size

easurements are not directly related to the load applied but
ather to effective indentation test load (P–W) where W is the
aterial resistance to the initiation of plastic flow.
The theoretical models could help to distinguish facts from

rtefacts in the experimental results. In the models presented
y Organov,5 the hardness of TiO2 cotunnite varies in the
ange 7–20 GPa. Based on the extended model,7 was found to
e 15.9 GPa, softer than common corundum, Al2O3 (21 GPa),
tishovite SiO2 (33 GPa),16 or B6O (45 GPa).17 The low hard-
ess of TiO2–cotunnite is due to the non-depicted bond iconicity
nd high coordination number of Ti (nine-fold), i.e. relatively
eak and non-directional Ti–O bonds. Moreover, the pro-
ounced anisotropy and the fact that shear elastic constants are
elatively weak compared to the axial ones,18 could suggest that
ltra hard TiO2–cotunnite is the result of enhancements of the
urface resistance to the initiation of plastic deformation due
o the pressurized processes, and not natural resistance to the
ocalized deformations. This could be discerned if a measure-

ent of dynamic hardness is done and shown the portion that
orresponds to both plastic and elastic indentation work.

While the connection between the hardness and elastic prop-
rties is beyond doubt, it is complex to solve the analytical
roblem of penetration of an indenter. The current status of var-
ous theoretical approaches given the “prediction” of material
ardness has been reviewed by Tse.19 It is shown that the simple
mpirical correlation with the shear modulus generally provide
ood estimates of the Vickers hardness. Semi-empirical mod-
ls based solely on the strength of chemical bonds, although
erformed as well, are theoretically incomplete. First-principles

alculations of the elastic constant and derived properties like
hear strength is perhaps the most reliable theoretical approach
o compare with experiment results.
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In this work, microscopic first-principles calculations and
umerical methods, based on fracture mechanics, are combined
o give a new hardness values for TiO2 in the controversial
otunnite phases. Given that rutile TiO2 is a technologically
mportant material in heterogeneous catalysis, as a pigment and
s an opacifier, our calculation includes elastic properties and
ardness in the normal phase rutile.

On the other hand, tin dioxide (SnO2) is an industrially impor-
ant material which is used in numerous applications where the
pecific electrical, optical and mechanical properties of SnO2
re highly desirable.

For example, SnO2 is used extensively as the active material
n gas sensors,20–23 as well as in systems where optical or electri-
al coatings are required, such as in low-emissivity architectural
lass solar cells,24 and liquid crystal displays.25

Moreover, SnO2 undergoes a structural transition to Pnmn
hase at 12 GPa but the transition pressure is reduced to
ower value by one order of magnitude, when a residual non-
ydrostatic pressure is present.26 This material has a phase
iagram whose order under pressure is consistent with the dia-
ram of SiO2 (at very high pressures).27 Consequently SnO2
s a prototype for the study of transformations and elastic
nisotropies of the SiO2 at laboratory scale, the largest compo-
ent of the earth’s crust, given that there is a complete analogy
o the sequence of the phase transformations experienced by
he tin oxide. Thus an indirect study of the SiO2 is possible
nd very useful, because the high pressures involved in the
ilica phase-transitions would not be achievable at laboratory
cale.

We apply first-principles method to obtain the elastic
onstants in single crystal of TiO2 and SnO2 and derivatives
roperties in the polycrystalline approach. To determine the
icrohardness Vickers (HV), we use a numerical truss-like
iscrete Element Method (DEM). This requires a parameter

epresenting a maximum tensile strength, among others. In this
ork, it is obtained from the strain-stress relationship for the
eakness C44 elastic constants calculation. The indentation pro-

edure applied in DEM is similar to that used to obtain the
ardness in Al2O3.28

. Methods

.1. First-principle method

The study of the structure and elastic properties of TiO2
nd SnO2 was carried out with the SIESTA ab initio method.29

his code is shown to give a good description of the structural
nd elastic properties of Hf oxides and their polymorphisms,30

s well as TiO2 in rutile and cotunnite phases18 and recently
nO2.31

SIESTA code has been developed and implemented in a
elf-consistent Density Functional Theory (DFT) scheme using
tandard norm-conserving pseudo-potentials and a flexible,

umeric linear combination of atomic orbital basis set, which
ncludes multiple-zeta and polarization orbitals.

Exchange and correlation are treated with the local density
pproximations. The basis functions and the electron density are

o
a
d
E
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rojected on a real-space grid in order to calculate the Hartree
nd exchange-correlation potentials. Forces and stresses are also
alculated efficiently and accurately, thus allowing structural
elaxation and molecular dynamics simulations.

The Bravais lattice in rutile (Fig. 1a) and cotunnite phases
Fig. 1b) are defined by the vectors: (a, a, c) and (a, b, c) respec-
ively. The equilibrium lattice and elastic properties of TiO2 used
ere were studied in detail in converged calculations.18 Apply-
ng to the equilibrium lattice small deformations through the

atrix D according to the symmetry of the crystal, the stress
ensor for TiO2 and SnO2 in rutile phases was obtained. Fitting
he results to Hooke’s law, the elastic constants are obtained
nd the directional Young’s modulus can be constructed. The
aximum strength is approximated to the higher value of shear

tress obtained from the stress–strain relationship related to the
44 (C55). This is due to the Vickers hardness imprint is mea-

ured on the crystallographic plane (1 1 0)32,33 and the tip of
ndenter exerts the stress in (0 1 1) and (1 0 1) crystalline plane.
espect to the polycrystalline description of the mean values
f elastic properties, the Voigt–Reuss–Hill (VRH) approach is
pplied to the oxides studied here.

.2. Truss-like Discrete Element Method

The Discrete Element Method (DEM) was originally devel-
ped by Cundall et al.34 to solve rock mechanics. Today, it
s widely accepted as an effective method of addressing engi-
eering problems in granular and discontinuous materials. The
ersion of the truss-like Discrete Element Method (DEM) pro-
osed by Riera35 in 1984 employed in this paper consists of
reating a continuous medium as regular repetition of discrete
asic units36 (Fig. 2).

The rigidity of the represented truss bars are equivalent to the
ontinuum that is being represented. Since they are considered
s spatial truss bars, each node accounts for three degrees of
reedom. The mass of the model is made discrete and concen-
rated on the nodes of the mentioned unit in a way to reproduce
he trial density of mass of the system.

A uniaxial relation between the axial forces vs. strain for
he bars following the bilinear softening law, proposed by
illerborg,37 was adopted for the representation of material.
his law, shown in Fig. 3, allows accounting for the irreversible
ffects of crack nucleation and propagation. In Fig. 3, Pcr repre-
ents the maximum tensile force transmitted by the bar, and εp

s the deformation (strain) associated with Pcr.
EA is the cubic model bar rigidity, equal to the product of

he material Young Modulus, E, by the cross sectional area of
he element A.35 This verify that Pcr = εp. EA, kr is the ductility,
y which the strain at the bar no longer transmit tensile force,
r.

The deformation limit εr is chosen to meet the condition
hat when an element fails and cracks opens, certain amount

f energy (Gf) is released. The general relationship between εp

nd Gf was established as a condition for traction failure and its
eduction is based on the Mechanics of Linear Elastic Fracture
qs. (1) and (2).
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Fig. 1. TiO2 in (a) rutile and (b) Pnma phases (plane 1 1 0).
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Fig. 2. (a) DEM basic cubic mod

This fracture energy is

f = K2
f

(
1 − ν2

E

)
(1)
This equation tells us that under smaller plasticity condition
he propagation of the crack is controlled by G or Kf. It is neces-
ary to maintain the plane strain condition with little plasticity

σ

w

Fig. 3. Relationship of the bars in the elemental cubic arrangements. (a) Cons
) modules composing the prism.

hat the crack does not exceed the size of the plastic zone on the
dge of the crack (more details in Supplementary page).

f = σ · π1/2 · a1/2 (2)

The bar stress is
= χ · P∈ r = χ · εp · EA (3)

here χ is a geometry-dependent parameter.

titutive diagram with control parameters; (b) load and unload scheme.31
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Applying (2) and (3) in Eq. (1)

p = Rf ·
[

Gf(
1 − ν2

) · EA

]1/2

(4)

where Rf = 1
χ·a1/2 is the failure factor.

In Fig. 3 Af is the effective area where the bar action is
istributed.38 As was defined early, the ductility in DEM is rep-
esented by kr and it can approximate to the ratio between Lcr

o the length at which the failure occurs. Lc is the basic cubic
odule length (Fig. 2a).

r = Lcr

Lc

The ideal condition of fragile system is kr value equal or
reater than 1. It is important to note that the bar has a linear
lastic behavior, with a breakdown of the global model, when
ompressed by indirect tensile (Poisson effect). A restriction
o the Poisson Modulus value to ν = 0.25 must be imposed to
chieve an agreement between the cubic arrangement and the
epresented elastic solid. For other values of ν, certain discrep-
ncies appear in terms of shear, but become negligible when

nterest is put upon the non-linear result of the studied system.

Since the values of Gf, εp and EA are input data that we have,
he value of kr is affected by Lcr. The step increment time (�t)

Fig. 5. Permanent impression by the indentator.

m
d
p
a
a

F
s

2.0 × 10−9 seg.

n the dynamic simulation must be less than the critical one. In
ur case the critical value of 1.45 × 10−11 seg, is obtained in
erms of the mass density, elasticity modulus and indicates the
ime when an elastic waves passes through a bar element. Rf can
e also calculated as a function of kr and Lc. When values for
he other variables are defined, the value of Lc is fixed. Detailed
escription is found in Refs. 38, 39. The toughness value, neces-
ary for this modelling cannot be obtained by our calculations.
iterature values would be employed.40

.2.1. Measuring hardness with DEM.
It is essential to model the “strain-softening” effect for a

orrect representation of the phenomenon of rupture in a brit-
le material. The softening (“strain-softening”) present in the
dopted diagram (Fig. 3) aims to put a condition on the amount
f energy to be consumed in breaking the material.

For numerical simulation of the hardness in the tetragonal
hase (P42/nmc) and orthorhombic ones (Pnma), the values of
he parameters used by the DEM, are derivatives of the elastic
onstants obtained from ab initio calculations. The simulated
aterial is originally orthotropic, but DEM approximation

mposes, to the determination of the hardness, that an isotropic
aterial to be rendered. In an isotropic material, constant Cij

epends on Young’s modulus (E) and Poisson’s ratio. For

rovide to DEM a representative E, we calculated first the
veraged uniaxial elastic constants of C11 C22 C33 obtained from
b initio calculations. This mean value is considered “C11” in

ig. 6. Damage energy curve (inset) at the time in which the fail occurs in the
tress–time function.
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Table 1
Calculated elastic constant values of rutile TiO2 compared to availble experimental data. All units of Cij are in GPa.

Elastic Constant TiO2

Rutile Pnma

Siesta Th.41 Exp.45 Exp.46 Exp.47 Siesta Th.42 Th.43

C11 340 366 268 273 266 688 555 563
C22 510 408 645
C33 470 606 484 484 470 649 450 782
C12 143 225 175 178 173 258 234 330
C13 154 224 147 149 136 240 237 254
C23 253 196 343
C44 181 189 124 125 128 129 89 231
C55

C66 204 272 190 194

Table 2
Calculated elastic constant values of rutile SnO2 compared to available experi-
mental data. All units of Cij are in GPa.

Elastic Constant SnO2

Rutile

Siesta31 Th.47 Exp.44 Th.48

C11 261 267 262 261
C33 483 471 450 472
C12 211 179 177 180
C13 161 150 155 150
C44 107 108 103 109
C

D
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HV =
d2 ≈ 1854 ·

d2 (5)

T
C
V

P

B

G
E
ν

V
V
V
ρ

θ

66 232 222 207 223

EM constitutive matrix52 and E is then adjusted to be EA. The
alues of the Constitutive Elementary Relation (CER) εp (ε44)
nd EA (E) would be fitted as well as possible to the maximum
trength value σ44 obtained through ab initio calculations. The
oughness value, necessary for this modeling cannot be obtained
y our calculations. Literature values would be employed.40

In DEM modelling, the critical length of the bars and the Pois-

on ratio are 2.00 × 10−7 m and 0.25 respectively. The parameter
52 which linearize the elastic constants for the model of bar

able 3
alculated thermo-elastic and acoustic properties of polycrystalline TiO2 using VRH

l, Vm, ρ, and θD are the Young modulus, Poisson constant, transverse, longitudinal an

olycrystalline properties TiO2

Rutile

Siesta Exp.49 Ex

o (GPa) 225 228 21

o (GPa) 154 115 12

0 (GPa) 376 285a 31
0.22 0.28a 0.2

t (m/seg) 5999 5119a 42

l 10,031 9214a 74

m (th.) 6639 5702a 47
(kg/m3) 4280 4260a 69

D (k) 933 893 61

a Calculated here with VRH approach.
133 109 203
188 204 159 254

mployed by DEM, is 1.125. This value is kept constant in all
alculations.

In order to make DEM convergence better, values greater
han 1 are applied to ductility kr. The method can describe the
ardness in different modes: the failure and fracture mode. The
ailure mode refers to the moment, in the simulation, in which
he bar “fails”, interpreted in the sense that the damage energy
Fig. 6) becomes different to zero.

The fracture of the material corresponds to the instant in
hich the global model stress–time curve has a constant path

nd the first break on damage energy curve appears (Fig. 6). At
his point, the deformation value is ε = εr, at which the bar no
onger transmits energy.

The indentation process consists of two steps: loading (apply-
ng maximum load for a few seconds) and unloading (see Fig. 4).

After this process, the permanent impression left by the
ndenture is measured (Fig. 5) and HV is calculated using Eq.
5).

2 · F · sen
136◦

2 F
d = d1 + d2

2

approach, compared with available theoretical and experimental data. E0, ν, Vt,
d averaged speed of sound, mass density and Debye temperature, respectively.

Pnma

p.46 Siesta Th.42 Exp

6 370 301 312(34)60

306(9)61

431(10)4

7 162 119
8 425 314a

5 0.31 0.33a

61 5436 4647a

21 10,327 9145a

33 6078 5208a

90 5490 5490
5 775a 775a
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Fig. 7. Young modulus anisotropy for (a) rutile (left), (b) cotunnite (right) structures.

Table 4
Calculated thermo-elastic and acoustic properties of polycrystalline SnO2 using
VRH approach, compared with available theoretical and experimental data. E0,
ν, Vt, Vl, Vm, ρ, and θD are the Young modulus, Poisson constant, transverse,
longitudinal and averaged speed of sound, mass density and Debye temperature,
respectively.

Polycrystalline properties SnO2

Siesta31 Exp.47 Th.48

Bo (GPa) 225 212a 213
Go (GPa) 96 115a 106
E0 (GPa) 253 294a –
ν 0.31 0.27a –
Vt (m/seg) 3707 4072a 3840
Vl 7167 7243a 7002
Vm (th.) 4150 4531a –
ρ (kg/m3) 6990 –
θ

3

3

r
t
d
a
V
B
c

i
r

e
e

3
3
(
m

F
u

o
t
i
i
V

D
t
T
e
a
b
t
T
i
m
r
o
8 V
D (k) 542 742a 565

a Calculated here with VRH approach.

. Results

.1. Elastic properties of single crystal and polycrystal

Tables 1 and 2 show the calculated elastic constants for
utile and cotunnite phases of TiO2 and rutile SnO2 respec-
ively where available theoretical41–43,47 and experimental44–46

ata are included for comparison. Tables 3 and 4 show thermo-
coustic properties in the polycrystalline approximation using
RH approach, with data taken from Tables 1 and 2. These
, G values are introduced in the Chen model9 to obtain, the
ompound hardness to be compared with DEM results.

In Fig. 7a and b, anisotropic Young modulus in single crystals
s shown, obtained from the elastic constants in cotunnite and
utile phase at normal pressure.

As was mentioned, the maximum strength value for param-
terizing DEM is chosen to be the higher shear stress σ44. An
xample is shown for the cotunnite phase in Fig. 8.

.1.1. Microhardness Vickers
.1.1.1. TiO2 in the rutile phase. TiO2 in the rutile phase
Fig. 1a), has a density of 4280 kg/m3. To parameterize DEM
ethod, the maximum strength σmax, as was mentioned, is

f
f

ig. 8. Stress-strain relationship. For the calculation of C44 linear regime is
sed. The maximum value is considered as a σF by DEM.

btained from the stress–strain relationship for the weakest of
he calculated elastic constants C44. The highest σ44 value found
n rutile is 2.7 GPa. To include the fracture propagation velocity
n DEM, the 60% of the mean sound velocity obtained from the
RH approach, was considered.
In order to build the isotropic constitutive matrix used in

EM, its first three upper diagonal elements were replaced with
he average of the crystal axial values C11, C22 and C33 (Table 1).
his mean value is equal to 380 GPa and named as “C11” in
quations quoted in Ref. 52. Given C11 we obtained the EA value
nd from the second equation of Ref., 52 C12 (C44). It should
e noted that EA now turn out to be slightly higher (0.09%)
han that E obtained with the VRH approximation (376 GPa).31

he microhardness Vickers HV in failure mode is 8.64 GPa and
n the fracture mode is 12.28 GPa. Hardness HV in the failure

ode has a small variation with respect to toughness for the
ange between 1.60 and 2.0 MPa m0.5 (Fig. 9). In this phase
ur results are in agreement with the experimental range values
.2–12.8 GPa (Table 5) of H .
Applying other theoretical models for the calculation of HV,
or instance the Chen et al. model9 and using experimental data
or G and B44 results HV between 11.4 and 15.3 GPa. With the
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ig. 9. Hardness–toughness relationship for rutile structure in DEM calculation.

ao model,6 HV = 9.1 GPa. Using the proposal by Zhou et al.,11

here was included from the Raman spectra by Nicol et al.62 the
requencies and the intensities relative to 720 cm−1, the hardness
s 8.3 GPa. All this results, shown in Table 5, are in general
greement with our model, and with the experimental mentioned
ange.

.1.2. High pressure phase orthorhombic TiO2

TiO2 in the cotunnite phase (Fig. 1b), has a density of
494 kg/m3. The maximum strength σmax, in this phase is
btained again from the stress–strain relationship, σ44–ε44
see Fig. 8). The highest σ44 (σmax) value found is 8 GPa.
s it mentioned earlier, “C11” value of 616 GPa is obtained

rom the average of our calculated axial elastic constants. The
elationships52 provide the EA value 513 GPa, 15% higher than
he value given by VRH polycrystalline approach (E = 425 GPa).
he remaining C12 (C44) was determined using a Poisson’s coef-
cient of 0.25.52 The toughness for this high density phase is
nknown. It is here approached, in a range of values between
.77 MPa m0.5 (Al2O3)40 and 6.6 MPa m0.5, found in ZrO2 sta-
ilized with CeO2. In the TiO2 orthorhombic phase the HV value
s 24.08 GPa in failure mode and does not depend on toughness.
n the fracture mode, hardness has very small variation with
espect to toughness: for values between 4.0 and 5.5 MPa m0.5,
he hardness HV was found to lie between 24.21 and 24.41 GPa.

The difference found between the theoretical predictions and
xperimental results could be explained based on the indenta-
ion load/size effect (ISE). This effect is found in microhardness

easurements in single crystal at precisely two structures of
utile TiO2, SnO2.15 ISE is explained on the basis of the work
ardening during indentation53,54 and the activation energy for
ucleation of dislocations.55 But according to Kendall–Hays
pproximation of ISE, there is a minimum level of indentation
oad (W) below which plastic deformation does not initiate, but
nly elastic deformation occurs. In a study by Li and Bradt15 on

number of hardness measurements in single crystals of SnO2

nd TiO2 was found that these minimum levels depend on the
urface crystallographic orientation. Taking the average of their
ublished results (Table 2 of Ref. 15), we obtain in the case of
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of covalent crystals. Cornell University Database; 2009 arXiv:0912.4942.

12. Pharr GM, Herbert EG, Gao Y. The indentation size effect: a critical exam-
ination of experimental observations and mechanistic interpretations. Annu
M.A. Caravaca et al. / Journal of the Eur

utile-TiO2, a load (W) equal of 22 g. If the hardness measure-
ents of Dubrovinsky et al., using loads in the range 25–300 g

n samples of cotunnite-type TiO2 recovered cryogenically at
7 K, are corrected with this minimum load, the resulting Hv

s found56 to be about 31 GPa, in fair agreement with our pre-
ictions based on the elastic properties of cotunnite TiO2. To
ompare with other theoretical models, we also estimated the
ardness using the model of Chen9 where the B and G moduli
re calculated applying VRH approach to the elastic constants
btained with SIESTA. The HV is 11.9 GPa. A recent calcula-
ion using CASTEP method57 together with the Simunek et al.

odel,10 gives HV = 26.05 GPa in good agreement with our pre-
iction. Applying the Gao model, we found a value of 20 GPa.
f our σ44 is replaced in the Lazar et al.58 prescription, in which
he hardness of an intrinsically brittle material, is related to the

inimum critical stress for brittle cleavage σC min, the hardness
esults in 8 GPa. Unfortunately it is not possible to compare with
hou model since there is not available measurement of Raman
pectrum in cotunnite TiO2. It could be desirable to dispose of
Raman spectrum in this high pressure phase.

.1.3. SnO2 in the semiconductor rutile phase
Tin oxide represents a semiconductor with a wide band gap

nd with a covalent character of the bond. In this tetragonal
hase (Fig. 8), the density is 6990 kg/m3. The calculated elastic
onstants from ab intio method are used to obtain the average
atrix elements as was done in TiO2, setting “C11” to 306 GPa

Table 1– SnO2). Applying the equation52 a value EA = 255 GPa
s found. The remaining matrix elements for C12 (C44) are
etermined, as was mentioned. The microhardness Vickers was
alculated to be 2.67 GPa, only in failure mode because the frac-
ure mode does not satisfy the DEM condition shown in Fig. 6.
his is 27% less than the more recently experimental value of
87 HV (3.68 GPa) found by Ouni et al. 32 The hardness cal-
ulated with Chen model using the B and G moduli obtained
ith SIESTA, is 7.7 GPa, but if the experimental values are used

nstead,45 the hardness is 12.7 GPa (see Table 5). If the σC min
s approximated to σ44, in the Lazar prescription, gives us a
ardness of 0.7 GPa. If the Gao model is parameterized with the
ata obtained with SIESTA, the hardness is 8.1 GPa. Fitting the
hou model with the published SnO2 Raman spectrum59,63 the

esulting HV is 16 GPa.

. Conclusions

We have found that the elastic properties obtained from ab
nitio calculations combined with DEM can be used for pre-
icting micro Vickers hardness in oxide materials with a wide
ange of hardness. Their values for rutile TiO2 is 8.6 GPa in
he fail model and 12.28 GPa in the fracture model. These com-
are well with available experimental HV = 11 GPa obtained at
5 ◦C. In this phase,the results provided by the models of Chen,
ao, Zhou, are in general agreement with our assessments. In
he case of TiO2 in cotunnite phase, the predicted micro Vickers
ardness are 24.08 and 24.41 GPa for the fail and fracture modes
espectively, which are in agreement (26 GPa) with very recently
heoretical ab initio assessment using the Simunek model. Other

1
1

Ceramic Society 34 (2014) 3791–3800 3799

stimations using Chen, Gao, and Lazar models provide even
ower hardness values for the cotunnite phase.

For SnO2 in the normal rutile phase, the hardness is, in
he failure mode, 2.67 GPa, lower than experimental value of
.68 GPa. For this phase the Chen, Gao and Zhou models provide
ven higher value HV, greater than 8 GPa.

All this evidence, suggest the needs of new experimental
esearch applied to these oxide phases. Especially since experi-
ental microhardness data of TiO2 and SnO2 in single crystals,

how the importance of critical load of the plastic flow initiation
W). It is noted that this magnitude is significant when compared
ith the indentation test loads applied.
This work uses a scheme of continuous elasticity theory that

mploys empirical parameters which is applied in the field of
he mechanics of failure and fracture. In our case, we show that
he method is able to predict the hardness, if parameterized with
onverged values obtained from ab initio quantum-mechanical
alculations.

Then our methodology to obtain the microhardness could be
pplied to a systematic study of tailoring material. Since hard-
ess is often related to shear elastic properties, our results can be
sed as a first order assessment of the solid material lubricating
roperties.

ppendix A. Supplementary data

Supplementary data associated with this article can be
ound, in the online version, at http://dx.doi.org/10.1016/j.
eurceramsoc.2014.06.022.
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