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Abstract
Keller’s theorem relates the components of themacroscopic dielectric response of a binary two-
dimensional composite systemwith those of the reciprocal systemobtained by interchanging its
components.We present a derivation of the theorem that, unlike previous ones, does not employ the
common assumption that the response function relates an irrotational to a solenoidal field and that is
valid for dispersive and dissipative anisotropic systems.We show that the usual statement of Keller’s
theorem in terms of the conductivity is strictly valid only at zero frequency andwe obtain a new
generalization forfinite frequencies.We develop applications of the theorem to the study of the optical
properties of systems such as superlattices, 2D isotropic and anisotropicmetamaterials and random
media, to test the accuracy of theories and computational schemes, and to increase the accuracy of
approximate calculations.

1. Introduction

In 1964, Keller [1] showed that for binary periodic compositesmade of particles in the shape of generalized
cylinders with arbitrary cross sections but with certainmirror symmetries arranged in a two-dimensions (2D)
rectangular lattice within a host, themacroscopic conductivity along a principal direction is proportional to the
inverse of the conductivity along the orthogonal direction of the reciprocal system, obtained from the original
systemby interchanging its constituentmaterials. The proportionality constant is the product of the
conductivities of bothmaterials. This result, known asKeller’s theorem, was originally obtained by averaging the
microscopic current along an edge of the unit cell [1] andwriting it in terms of the electric potential, which is a
solution of Laplace’s equation.

The conditions underwhichKeller’s result applies were later generalized, special cases were discussed and
some applications have been developed. Keller [1] showed that for a checkerboard geometry one could obtain a
simple analytical formula for themacroscopic conductivity as a simple consequence of his theorem: the
macroscopic response is given simply by the geometricalmean of the conductivities of its two phases. The same
formulawas then shown to apply to the conductivity of amacroscopically homogeneous and isotropic but
microscopically disordered 2D systemmade up of two phases with the same total area [2]. From this formulae,
approximate [3] results for the conductivity of a 2D lattice of parallelograms and of 3Dparallelepipeds for
systemswith high contrast have been found. Similar closed formulae have been proposed [4] and proved [5] for
2D checkerboardwithmore than two phases.

On the other hand, Keller’s theoremhas been generalized [6] to anisotropic 2D composites and a relation has
been found relating the tensors that describe themacroscopic anisotropic response of a system to those of its
reciprocal, inwhich themicroscopic responses are not only interchanged but also rotated by a right angle. As a
special case, the relation between the principal conductivities of systemswith isotropic components but
anisotropicmacroscopic responsewere obtained [6].

Schulgasser [7] argued that a theorem analogous toKeller’s theorem, inwhich there is a unique
correspondence between the response of a system and that of its reciprocal system cannot hold in 3D.He further
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provided a counterexample consisting of an isotropic poly-crystalline systembuilt from a disorderedmixture of
randomly oriented anisotropic binary layered crystallites .Molyneux [8] has shown that for a disordered
homogeneous 3D systemwith components described by positive definite tensors characterized by a stochastic
functionswith given one-, two- and three-point correlation functions one can establish strict bounds on the
effective permittivity but they cannot be improved on by incorporating further correlations. For isotropic
biphasic tridimensional system it has been shown that the product of the principal values of themacroscopic
conductivity is bounded frombelowby the product of themicroscopic conductivities of the constitutive
phases [7, 9].

Keller’s theorem can be adapted to all kinds of problems described by similar equations. Though first derived
for the electrical conductivity, it also applies to the dielectric permittivity or the thermal conductivity [10]. A
recurring theme present in the derivations of Keller’s theorem is that a system is excited by an irrotationalfield,
such as an electrostatic field, or a thermal gradient, and the system responds by establishing a solenoidal field,
such as an electric current, a displacement field or a heatflux. Then, use ismade of the fact that aπ/2 rotation
interchanges the irrotational and solenoidal character of afield in 2D, so that a rotated excitation (response)may
be interpreted as the response (excitation) for the reciprocal system. Thus, a question that naturally arises
concerns the possible generalization of Keller’s theorem to situations inwhich the excitation and responsefields
can have a different nature. For instance, the displacement field is solenoidal in the absence of external charge,
but Keller’s theoremmight be applicable even in the presence of external charge. Similarly, an electric current is
necessarily solenoidal only in the stationary case, but it is not so in the dynamical case, when excited by a time
varyingfield.

The homogenization problemof a composite excited by oscillating sources has been analyzed byWellander
using the notion of two-scale convergence [11] for systems that occupy afinite region andwhen the sources of
the excitation lie on its outside. Guenneau et al also generalizedKeller’s theorem tofinite frequency [12]. An
important physical limitation of thefinite frequency generalizations is the usual assumption that the system is
characterized byHermitian response operators, thus excluding absorbingmedia [12]. Some other approaches
for the homogenization ofMaxwell equations have been proposed [13–16]. In 1985Mochán andBarrera
developed a general homogenization theory in terms of projection operators that allow accounting for the effects
of the fluctuations of themicroscopic electromagnetic fields in themacroscopic electromagnetic response [17].
They also developed several applications of that homogenization formalism to diverse systems such as liquids,
bulk crystals, crystalline surfaces and rough surfaces [18]. In this workwe apply this formalism to extendKeller’s
theorem to the dielectric response of a 2Dbinary composite in the finite frequency case, allowing for dispersion
and absorption, thoughwe remain in the non-retarded regime, where thewavelength of light is assumed to be
much larger than the lengthscale corresponding to themicroscopic texture of thematerial.

The paper is organized as follows: in section 2we obtain Keller’s theorem for the dielectric tensor of 2D
binary composites and study some special cases, such as isotropic systems and systems symmetric under
interchange ofmaterials.We also obtain afinite frequency generalization of Keller’s theorem for the electrical
conductivity. In section 3we develop some applications of the theory. Namely, we show that the normal and
parallel response functions of a superlattice are determined one from the other; we test the compliance of
effectivemedium theories toKeller’s condition; we test the accuracy of an efficient computational scheme based
onHaydock’s recursivemethod (HRM) calculation [19–21] for the calculation of themacroscopic response of
periodic systems; we discuss the relation among the dielectric resonances of a system and that of its reciprocal
system andwe explore the correspondingmicroscopic fields [22]; we test the accuracy of numerical
computations for ensemblemembers of disordered systems; andwe illustrate howKeller’s theoremmay be used
to increase the accuracy of rough approximate theories. Finally, section 4 is devoted to conclusions. In an
appendixwe generalize our results for the case of a compositemade of anisotropic components.

2. Theory

In this sectionwe generalize Keller’s theorem for thefinite frequencymacroscopic dielectric response and
conductivity of arbitrary 2Dbinary composite systemsmade of possibly dispersive and absorbingmaterials,
using the long-wavelength approximation butwithoutmaking further assumptions about the nature of the
excitingfield. In the following sections we develop applications of the theorem to the response of superlattices, to
the study of the resonances in the optical spectra of conjugate 2Dmetal-dielectric composites and of the
correspondingmicroscopic field, to the optical properties of randommedia, to test theories and computational
schemes and to accelerate the convergence of the latter.

Within a compositemedium the electromagnetic fields have spatial variations due to the finite wavelength of
light. They also have spatial variations due to the texture of the system. Themacroscopic field has only the
former variations andwewill treat the latter as spatial fluctuationswhichwe proceed to eliminate to obtain the
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macroscopic response M̂ of the system from itsmicroscopic response ̂ . Themicroscopic dielectric response ̂ of
a compositemedia is in general a linear operatorwhich acting on themicroscopic electric field E


yields the

displacementfield

D E 1=
 

ˆ ( )

and it can bewritten as

, 2
aa af

fa ff


 

 
=

⎛
⎝⎜

⎞
⎠⎟ˆ

ˆ ˆ
ˆ ˆ ( )

wherewe define

a f, , , , 3   a bº =ab a bˆ ˆ ˆ ˆ ( )

with aˆ the average (α=a) and thefluctuation (α=f )projectors, defined such that for any fieldf, a af fº ˆ
is its average and f ff f= ˆ itsfluctuations around the average, so that equation (1) becomes

D E E , 4a aa a af f = +
  

ˆ ˆ ( )

D E E . 5f fa a ff f = +
  

ˆ ˆ ( )

Wewill not pursue at this point a specific definition of what wemean by average and by fluctuation, butwe
demand that the corresponding operators aˆ are projectors into complementary subspaces, that is, they should

be idempotent,
2
 =a aˆ ˆ (α=a, f ), their cross products should be null, 0a f f a   = =ˆ ˆ ˆ ˆ and 1a f + =ˆ ˆ ˆ

with 1̂ the identity operator. Thismeans that â throws the fluctuations away, so a second application leaves the
result unchanged, f̂ throws the average away, so that a second application leaves the result unchanged, and
throwing away the fluctuations of afield fromwhich the average has been eliminated leaves nothing.Wewill also
assume that these operators are space- and time-invariant, so that they commutewith spatial and temporal
derivatives.

Assumewe excite the systemwith external charges and currents described by the densities ρ and
ȷ that have

nofluctuations, ρ=ρa, a=
 ȷ ȷ , ρf=0, and 0f =

ȷ .Wemay assume this conditions as, being external sources,

ρ and j

are unrelated to the texture of the composite. FromMaxwell equations formonochromatic fields with

frequencyω=qcwithin non-magneticmediawe obtain awave equation for thefluctuating electricfield

q
E D E E
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whichwe formally solve for Ef
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wherewe replaced
T2 ´  ´  - ˆ and, usingHelmholtz theorem,we introduced the transverse

projector
T
̂ and its complement, the longitudinal projector
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it tofluctuating fields. Substituting equation (7) into (4)we obtain
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wherewe identified themacroscopic dielectric response
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as that which relates the average displacement to the average electric field.
In analogy to equations (4) and (5), wewrite

E D D , 10a aa a af f
1 1 = +- -  

ˆ ˆ ( )

E D D , 11f fa a ff f
1 1 = +- -  

ˆ ˆ ( )
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where 1-ˆ is the inverse dielectric operator. FromMaxwell equations we obtain awave equation for the
fluctuating displacement field

D D q D , 12
T

ff f fa a
T

f
2 1 1 2   + = -- - ˆ ( ˆ ˆ ) ˆ ( )

wherewe used the absence offluctuating external charges ρf=0.We solve this equation for Df


as

D q D , 13f ff
TT

fa a
1 2 2 1 1 = - + - - - - 

(( ˆ ) )) ˆ ( )

wherewe denote by ff
TT 1¼ -(( ) ) the inverse of the operator ¼( ) after restricting it tofluctuating transverse fields.

Herewe introduced the inverse Laplacian∇−2 as away to denote theGreen’s operator G2 =- ˆ for Poisson’s
equation, G 12 =ˆ ˆ. Substituting equation (13) into (10)we obtain

E q D D , 14a aa af ff
TT

fa a M a
1 1 1 2 2 1 1 1    = - +  =- - - - - - -  

( ˆ ˆ (( ˆ ) )) ˆ ) ˆ ( )

wherewe identified themacroscopic inverse dielectric response

q . 15M aa af ff
TT

fa
1 1 1 1 2 2 1 1    = - + - - - - - - -ˆ ˆ ˆ (( ˆ ) )) ˆ ( )

Up to this point, our results (9) and (15) are completely general, as we have introduced no approximation in
their derivation. Nowwewill consider the long-wavelength approximation, inwhichwe assume that the
wavelengthλ of a freely propagating wave of frequencyω ismuch larger than the lengthscaleℓ that corresponds
to the texture of the composite, l  ℓ.We expect that∇2 acting on afluctuating field to be of order 1 2ℓ .
Thus, itmay safely be assumed that ̂ is negligible compared to q2 2 in equation (9) except very close to a
resonance or formetallicmedia at frequencies where the penetration depth is close to itsminimum.However,

q2 2 appearsmultiplied by
T
̂ , so its effect is null when acting on longitudinal fields. Thus, wemay

approximate equation (9) by

. 16M aa af ff
LL

fa
1    = - -ˆ ˆ ˆ ( ˆ ) ˆ ( )

Similarly, wemay neglect q2 2- acting onfluctuating fields when comparedwith ò−1 in equation (15) and
approximate it by

. 17M aa af ff
TT

fa
1 1 1 1 1 1    = -- - - - - -ˆ ˆ ˆ (( ˆ ) ) ˆ ( )

Finally, we take the longitudinal projection of equation (16) and the transverse projection of equation (17),
andwe employ the blockmatrix theorem to obtain

18M
LL LL
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and

. 19M
TT TT
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These are themain results of [17].
Consider now the specific form for the transverse and longitudinal projectors,

P 20L 2=  -ˆ · ( )

and

P , 21T 2= - ´   ´-ˆ ( )
so that for any vector field F


we have

F F , 22
L 2=  -
 

· ( )

F F . 23
T 2= - ´   ´-
 

( )

In the particular case of 2D, forfields along the x–y plane depending only on x and y, we can rewrite
equation (23) as

F F , 24
T

R R
2=   -

 
· ( )

wherewe represent∇as the two dimensional vector operator ,x y¶ ¶ ¶ ¶( ), and∇R is the same operator after a
90° rotation

y x
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with

R 0 1
1 0

26=
-( ) ( )

the rotationmatrix, which coincides with the 2DLevy-Civita antisymmetric tensor. To avoid ambiguities in our
notation and to eliminate the need for the dot products above, we represent vectors as columnmatrices and
rewrite equations (22) and (24) asmatrix products,

F F 27
L t2=  -
 

( )

and

F F , 28
T

R R
t2=   -

 
( )

with the superscript t denoting transpose.
We consider now a binary composite systemmade up of two isotropic localmaterialsA,B, with

corresponding dielectric functions òA and òB, so that

r B r B r1 , 29A B  = - +
  ( ) ( ( )) ( ) ( )

where B r 0, 1=
( ) is the characteristic functionwhich takes the value 1 (0) in the regions occupied bymaterialB

(A). Notice that

r
r

, 30
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where
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corresponds to the same composite as r
( ) but withmaterialA interchangedwithmaterialB. Thus, wewrite

equation (19) as

32M
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wherewe employed the transverse projector (equation (24)) and introduced explicitly the rotationmatrixR and
its transposeRt. Aswe assumed themicroscopic response r

˜ ( ) is isotropic at each position, we can eliminate the
innermost rotationmatrices andwrite
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wherewe identified the longitudinal projector
L
̂ from equation (20) and themacroscopic dielectric function

from equation (18).We invert both sides to obtain

R R
. 39M

TT M
LL t

A B

1
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Nowwe assume that the homogenizedmacroscopic system is translationally invariant, so that its
electromagnetic normalmodes are planewaves. Let the unit vector k̂ be the direction of thewavevector of any of
suchmodes, and k kRR =ˆ · ˆ the perpendicular direction. Then, wemay interpret equation (39) as

k k k k
kk kkR R

, 40R R
t

M R R
t

t
M

t t

A B
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=-ˆ ˆ ˆ ˆ ˆ ˆ ˜ ˆ ˆ
( )

wherewe introduced the representations kk
L t
 ˆ ˆ ˆ and k k

T
R R

t
 ˆ ˆ ˆ of the longitudinal and transverse

projectors in reciprocal space, andwe represent the dielectric operators M̂ and M̃̂ by the dielectric tensors M
and M̃ . Introducing explicitly the rotationmatrices, we rewrite this equation as

kk kk
kk kk

R R R R
R R

. 41
t t

M
t t

t
M

t t

A B

1 
 

=-ˆ ˆ ˆ ˆ ˆ ˆ ˜ ˆ ˆ
( )

Wecancel the external rotationmatrices, and since this equation is obeyed for arbitrary directions k̂ , we also
cancel the projectors kk

tˆ ˆ to obtain finally ourmain result, a version of Keller’s interchange theorem
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1, 42M MR A B   =˜ ( )
i.e., themacroscopic dielectric tensor of a binary composite M multiplied by the rotatedmacroscopic dielectric
tensor of the same systembutwith the twomaterials interchanged,

R R , 43MR M
t =˜ ˜ ( )

is simply given by the product of the dielectric functions of the components (times the identity tensor 1).
We remark that to obtain this result we did not assume the absence of external charges nor currents. The

response functions of the systemought to be intrinsic quantities, with no dependence on the existence of
external sources. Actually, somehomogenization theories require external sources in their formulation.We only
assumed that the sources have no spatial fluctuations, as otherwise it would notmake sense to pursue a
macroscopic description of the response of the system. Furthermore, wemade no assumption about the
frequency, except for demanding that the corresponding wavelength be large in comparisonwith the
microscopic lengthscale corresponding to the texture of the composite. The systemmay be periodic or random,
aswe only demanded that from amacroscopic point of view it should be homogeneous. The response functions
of the components òA and òBmay be real positive constants, corresponding to transparent dielectrics, or complex
frequency dependent functions, corresponding to dissipative, dispersivemedia.

Some simple consequences of equation (42) follow: the determinant of equation (42) yields

det det . 44M M A B
2 2   =( ) ( ˜ ) ( )

In normal axes, sayX,Y, it becomes

. 45M
xx

M
yy

M
yy

M
xx

A B     = =˜ ˜ ( )

For isotropic (within the plane) composites it yields

, 46M M A B   =˜ ( )

for the corresponding scalar response functions. Finally, for the very special case of an isotropic system that is
invariant under the interchange A B « , such as a periodic checkerboard or a disordered systemmade by
adding randomly particles of eachmaterial with the same probability, we obtain from equation (46) the
analytical result

. 47M M A B   = =˜ ( )

We recall that the dielectric function òα,α=A,B of each phasemay bewritten in terms of its conductivity
σα as

1
4 i

, 48
p s
w

= +a
a ( )

wherewe incorporate inσα the induced currents within the system, including polarization and conduction
currents. Similarly, themacroscopic responsemay bewritten in terms of amacroscopic conductivity,

1
4 i

. 49M
M sp

w
= + ( )

Substitution of equations (48) and (49) in (42) yields

1 1
i

4

i

4
, 50M MR M MR A B A Bs s s sw

p
s s

w
p

s s- + = - +˜ ( ˜ ) ( ) ( )

wherewe used a notation analogous to that in equation (43). Thus, for low frequencies we recover the usual
Keller’s theorem for the conductivity

1, 51M MR A Bs s s s=˜ ( )

but this equality is not obeyed at intermediate frequencies and at large frequencies it should be replaced by a new
relation

1. 52M MR A Bs s s s+ = +˜ ( ) ( )

We remark that Keller’s theoremwas originally obtained for the conductivity but assuming explicitly that the
divergence j 0 =


· of the electric current density j


is zero, and using that aπ/2 rotation changes curl-free

fields to divergence-less fields and vice-versa. However, that derivation becomes invalid atfinite frequencies, for
which j iwr =


· which in general is not null.

3. Applications

In this sectionwe illustrate our generalized Keller’s theoremwith a few applications and some numerical
calculations.
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3.1.One dimensional systems
Consider a systemmade up by stacking thin layers ofmaterialsA andB along the y direction. The system is
invariant under translations along the x–z plane, so itmay be regarded as a 1D system, although the fields live in
3D space. Nevertheless, as the system is invariant under rotations around the y axis, wemay assumewithout loss
of generality that it lies on the x–y plane and regard the system as 2D.

The electric field E Ex= parallel to the layer surfaces is continuous across the interfaces and has a slow
spatial variation across an individual layer, so it is almost constant. Thus, themacroscopic response

f f1 53M M
xx

A B    = = - + = á ñ ( ) ( )

is simply the average of the response of the components, where f is thefilling fraction of the bmaterial. According
to equation (42)

f f f f1 1 1 1 1
. 54

M M
yy

M
xx

A B

B A

A B A B 



 

 

    
= = =

- +
=

-
+ =^

˜ ( ) ( )

This is a well known result whichmay be obtained by realizing that D Dy=^ is continuous across the interfaces
and slowly varying across each layer, so that the inverse dielectric function is the average of the inverse dielectric
functions of the components. Nevertheless, we have shown that according toKeller’s theorem the results above
are not independent, but each one is a consequence of the other.

Notice that the derivation above could be applied to a disordered system aswell as to an ordered one, but it is
unable to yield non-trivial consequences of disorder such as Anderson localization [23] due to our use of the
long-wavelength approximation; we have assumed there are no inhomogeneities on length-scales comparable
or larger than thewavelength, thus ourmodel doesn’t incorporate the long rangefluctuations expected in 1D
systems in thermodynamic equilibrium.

3.2. Effectivemedium theories
In 2DMaxwell–Garnett theory assumes particles in the shape of circular cylinders each of which responds to the
localfield, given by an externalfield and thefields produced by all other particles, which is assumed to be dipolar.
Assuming the particles are on a square lattice or that their positions are disordered but with no correlations
beyond two particle correlations, the field produced by particles within a Lorentz cylindrical cavitywould be
null, while the field of those particles farther away corresponds to the sumof themacroscopic field and the
depolarization field of the cavity, yielding the expression [24]

f . 55M A

M A

B A

B A

 

 

 

 

-
+

=
-
+

( )

This formula equates the polarizability of a cylindermade of the homogenized composite with the response òM
within a host with response òAwith the volume average 2Dpolarizability of cylinders with response òBwithin the
hostA, i.e., the polarizability weighted by the filling fraction f ofmaterialB.

Interchangingmaterials yields the response of the reciprocal system

f . 56M B

M B

A B

A B

 

 

 

 

-
+

=
-
+

˜
˜

( )

As the right hand sides of equations (55) and (56) are equal but for a sign change, wemaywrite

, 57M B

M B

M A

M A

 

 

 

 

-
+

= -
-
+

˜
˜

( )

fromwhich equation (46) follows immediately.
On the other hand, the symmetrical Bruggeman’s effectivemedium theory does not differentiate between

host and particles and treats bothmaterialsA andB on the same footing. It postulates that the average
polarizability of particlesmade up ofmaterialsA andBwithin a hostmade up of the homogenized composite,
weightedwith the corresponding filling fractions 1−f and f, should be null. For circular cylindrical particles, this
is represented by the equation [24]

f f1 0. 58A M

A M

B M

B M

 

 

 

 
-

-
+

+
-
+

=( ) ( )

Wemay rewrite this equation as

f1 2 . 59M
A B

M
A B

 


 = + - -( )( ) ( )
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When themediaA andB are interchanged, this equation becomes

f1 2 . 60M
A B

M
A B

 


 = - - -˜

˜
( )( ) ( )

Adding equations (59) and (60) yields

1 1
, 61M M A B

M M

   
 

+ = +
⎛
⎝⎜

⎞
⎠⎟˜

˜
( )

fromwhich equation (46) follows immediately.

3.3. Periodic system
To illustrate the use of Keller’s theorem to test numerical calculations of themacroscopic dielectric response, we
first consider a square array of cylindricalmetallic wires in vacuumand its reciprocal systemmade up of a square
array of cylindrical holes within ametallic host (figure 1). For simplicity wemodel themetallic phase with the
Drude response

1 i 62D p
2 2 w w w wg= - +( ) ( ) ( )

with amoderate damping characterized by themean collision frequency γ=0.01ωp.We calculate òM and M
~

for these systems employing an efficient procedure [19, 20, 25–27] based onHRM [28] and implemented in the
Photonic computational package [29].

Infigure 2we show the response M̃ of an array of cylindrical holes within ametallic host with a smallfilling
fraction f a L 0.12 2p= = , where a≈0.18L is the radius of the cylinders and L the lattice parameter, calculated
with theHRM.Notice that within the long-wavelength approximation the actual value of L is irrelevant as long
as it ismuch smaller than thewavelength.We also show M̃ as obtained through the use of Keller’s theorem from
the response òM of an array of wires in vacuum, calculatedwith theHRM. The agreement between both
calculations is very good even at the peaks. In the figure we have indicated the resonance frequency

0.74 p
1w w»˜ ( ) , corresponding to a peak in Im M̃ . This resonance is a dipolar resonance and is slightly blue

shifted from that corresponding to the dipolar surface plasmon of a single cylindrical hole, at 2d pw w=
~

/ due

to the interactionwith neighbor holes.We also indicate in thefigure the zero 0.67 p
1w w»( ) of the real part of

Re M̃ , which, according toKeller’s theorem, corresponds to a resonance in the response òM of an array of wires.
This is slightly red-shiftedwith respect to the dipolar surface plasmon 2d p dw w w= = ˜ of a single
cylindrical wire.

Infigure 2we also show results for a systemwith a higher filling fraction f=0.38 (a≈0.35L). TheHRM
calculation for a lattice of holes and the application of Keller’s theorem to theHRMcalculation for a lattice of

Figure 1.Cross section of a square lattice of cylindrical inclusionsAwith response òAwithin a hostB of response òB.

8

New J. Phys. 20 (2018) 023028 GPOrtiz andWLMochán



wires are again in very good agreement. In this case the interactions among inclusions are stronger and the
dipolar peak is further blue shifted up to 0.83 p

1w w»˜ ( ) , while the zero is red shifted to 0.55 p
1w w»( ) .

Notice that for both f=0.1 and f=0.38, the resonancesω(1) and 1w̃( ) arewell described by the 2DMaxwell-
Garnett theory (equations (55) and (56)), which for this system yield f1 2 p

1w w= -(( ) )( ) and

f1 2 p
1w w= +˜ (( ) )( ) . Nevertheless, for f=0.38 there is a further resonance at 0.71l

pw w» . This is related
to the excitation at largefilling fractions ofmultipoles of higher order than the dipole. Curiously, for a cylindrical
single wire and for a single hole all themultipolar resonances are degenerate with the dipolar surface plasmon
at 2pw .

Infigure 3we show òM and M̃ calculatedwith theHRM for the same system as infigure 2 butwith a high
filling fraction f=0.75 (a≈0.49L). As a reference, we also show the results ofMG theory.WhileMGpredicts a
single peakwith a dipolar character, the numerical HRMcalculation yields several peakswithmultipolar
contributions, five of which are clearly visible. Of these, some are blue shifted and some are red shiftedwith
respect to the resonant frequency of an isolatedwire and an isolated hole.We expect that the peak in òM that is
furthest red shifted and the peak in M̃ that is furthest blue shifted correspond to themodes with the largest
dipolar contribution. Both of these shifts are close but larger than those predicted byMG theory.

The results above can be understood from the fact that within theHRMwe canwrite

F u F u, , 63M A M B   = =( ) ˜ ( ˜) ( )

where u 1 1 A B = -( ) and u 1 1 B A = -˜ ( ) are the spectral variables of the system and its reciprocal
system, andwhere F is a function given by a continued fraction determined by theHaydock coefficients which
are determined exclusively by the geometry of the system.Notice that u u1= -˜ , so that any resonance u* in the
function F corresponds to a resonance frequency *w in the system, such that u u* *w =( ) , and a corresponding
resonance *w̃ in the reciprocal system, such that u u u1* * *w w= - =˜( ˜ ) ( ˜ ) . Thus, according toKeller’s
theorem, for each resonanceωn in òM theremust be a corresponding resonance nw̃ in M̃ and for theDrude
model, they should be related through n n p

2 2 2w w w+ =˜ . Fromfigure 3we can verify that this is the case
as 0.23 0.97 0.49 0.87 0.59 0.81 0.82 0.57 0.89 0.46 12 2 2 2 2 2 2 2 2 2+ » + » + » + » + » .

Infigure 4we show themicroscopic electric field in a lattice of wires, as infigure 3 for three frequencies: the
resonance at 0.59 pw w» , the dipolar plasmon frequency 2pw w= of an individual wire and the resonance
atω=0.82ωp. The calculationwas performedwith the Photonic code [29]. Note that in themiddle panel the
intensity of the field is the same along the horizontal and vertical directions. In the left panel, corresponding to a
resonance that has been red shifted from that of the single wire, the field ismuchmore intense close to the
surface of thewires along the vertical direction, which coincides with the direction of the external field, while in
the right panel, corresponding to a resonance that has been blue shiftedwith respect to that of an isolatedwire,

Figure 2.Real and imaginary parts of themacroscopic response M̃ of a square lattice of cylindrical holes within aDrudemetal as a
function of frequency for a relatively low (left panels) and an intermediate (right panel)filling fraction f=0.1 and f=0.38. The
continuous line corresponds to theHRMnumerical calculation of M̃ . The crosses correspond to the use of Keller’s theorem to obtain

M̃ from the response òM of an array of wires in vacuum, obtained from theHRMwith the sameHaydock coefficients but a different
spectral variable.We indicate the frequencies of the peaks of Im M̃ and the zeroes of Re M̃ .
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the intensity is higher along the horizontal direction, perpendicular to the external field.We have verified a
similar behavior for the other resonances to the left and right of the isolated surface plasmon.

Figure 5we show themicroscopic field for a lattice of holes, the reciprocal system to that infigure 4, for the
resonance at 0.57 pw w=˜ , the dipolar surface plasmon frequency 0.71 p

2w w=˜ ( ) of an isolated cylindrical hole
within aDrude conductor, and 0.81 pw w=˜ .We note that thefield distribution for each panel is similar to the

field distribution shown infigure 4 for the corresponding paired frequencyω, with p
2 2 2w w w+ =˜ . Thus, the

panels offigure 5 going from left to right correspond to the panels offigure 4 going from right to left. For
frequencies smaller than that of the isolated surface plasmon the field ismaximumat the surface of the holes in
direction normal to the externalfield, while at frequencies larger than that of the isolated surface plasmon the
maxima lie along the direction of the external field.

The results above (figures 2–5)were calculated for an isotropicmaterial, for which theHaydock coefficients,
and thus the function F of equation (63), are invariant under rotations. Thus the only change in going from the
systemofwires to the systemof holes is the substitution u u u1 = -˜ . This is not the case for an anisotropic
system. Infigure 6we show the response of an array of holes calculatedwith theHRMand that obtained by
applyingKeller’s theorem to the response of the corresponding array of wires, as infigure 2, but for an
anisotropic rectangular arraywith sides in a 3:2 ratio (L L3 2y x= , with Lx and Ly the lattice parameters) and for
a highfilling fraction f a L L a L2 3 0.5x y x

2 2 2p p= = =( ) (a L L0.49 0.33x y» » ). The direction of the field for

Figure 3.Real and imaginary parts of themacroscopic dielectric response of a square lattice of cylindrical wires in vacuum (left panels)
and a square lattice of cylindrical holes within ametal (right panels) for a highfilling fraction f=0.75, calculatedwith theHRM (solid)
andwith theMGapproximation (dashed). The conducting phases are described by theDrude response. The frequencies of a few
resonances are indicated, as well as the resonance frequency of an isolatedwire or hole close to 0.71ωp.

Figure 4.Direction of the real (green arrows) and imaginary (blue arrows) parts of themicroscopic field andfieldmagnitude (color
map) for a square lattice of wireswith afilling fraction f=0.75 as infigure 3 excitedwith a homogeneous external field of unit
magnitude along the vertical direction corresponding from left to right to the frequencies 0.59 pw w= , 0.71 pw w= and 0.82 pw w= .
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the array of holes was taken along the short and along the long sides of the rectangular unit cell (left and right
panels respectively). Note that, unlike figure 3, infigure 6 there aremore resonances shifted towards one side
than towards the opposite side of the surface plasmon of the isolated hole. This is consistent with figure 5which
shows that for 2pw w< thefield ismaximumalong the direction normal to that of the external field. Thus, it
points along the long side of the unit cell in the left side of the left panel offigure 6, producing no visible
structure, and along its short side for the right panel, producing a strong interaction among the holes and thus a
rich resonant structure. On the other hand, for 2pw w> , thefield is stronger along the field’s direction, and
therefore, it produces strong interactions and a rich structure in the right side of the left panel offigure 6 and only
a single blue shifted resonance in the right panel. In this case, theHaydock coefficients used for the direct
calculation of the array of holes is different from those used for the array of wires, due to theπ/2 rotation
required byKeller’s theorem.Nevertheless, the direct calculation of M̃ and the calculation usingKeller’s
theorem are in excellent agreement.

3.4.Disordered systems
Weconsider now the response of a disordered system, approximated by an ensamble of periodic systemswith a
large unit cell withinwhichNwires are set at randompositions, as illustrated in figure 7. Infigure 8we show the

Figure 5.Direction of the real (green arrows) and imaginary (blue arrows) parts of themicroscopic field andfieldmagnitude (color
map) for the system reciprocal to that offigure 4, i.e., a square lattice of holes within a conductor with afilling fraction f=0.75 excited
with a homogeneous external field of unitmagnitude along the vertical direction corresponding from left to right to the frequencies

0.57 pw w= , 0.71 pw w= and 0.81 pw w= .

Figure 6.Real and imaginary parts of principal values of themacroscopic response of a rectangular array of cylindrical holes within a
Drude conductor as a function of frequency for an aspect ratio 3:2 and for a filling fraction f=0.5, calculatedwith theHRM (solid)
and applying Keller’s theorem to the response of the corresponding array of cylindrical wires (crosses). The field points either along
the short side (left panel) or along the long side (right panel) of the rectangular unit cell, for the case of the array of holes, and in the
perpendicular direction for the case of wires.
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components M
ab˜ of the dielectric tensor calculatedwith theHRM for one realization of the reciprocal system,

consisting of a disordered array of cylindrical holes within a conductor.We tookN=30 holes and distributed
them randomlywithout correlation, allowing the holes to overlap. In the samefigurewe show the result
obtained by first calculating the response M

ab of the corresponding disordered systemof conductingwires in
vacuumand then using the tensorial version of Keller’s theorem equation (42). Notice that although the

Figure 7. Illustration of a disordered system approximated by the periodic repetition of a relatively large unit cell withinwhich
numerous wires occupy randompositions.

Figure 8. Frequency dependence of the real and imaginary parts of the components M
ab˜ (solid) of the dielectric tensor calculatedwith

theHRM for a singlemember of an ensemble that approximates a disordered systemmade up of cylindrical holes within aDrude
conducting host as illustrated infigure 7. The system consists of 30 cylinders of radius a=0.12L randomly distributedwithout
correlation among their positionswithin a square unit cell of side L discretized to 501×501 pixels. Thefilling fraction is f=0.76.We
also show the corresponding result obtained from the dielectric tensor of the corresponding system of conducting wires in vacuumby
employing the tensorial version of Keller’s theorem (equation (42)) (crosses).
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disordered system is isotropic, a singlemember of the ensemble with afinite number of particles is anisotropic,
its principal directions are not necessarily alignedwith theCartesian axes and thus theymay depend on
frequency, so that M is not a diagonalmatrix. The response shows a very rich structure due to the strong
coupling between neighbor holes, with fluctuating nearest neighbor distances andwith several pairs of
overlapping neighbors. Nevertheless, Keller’s theorem seems to be satisfied quite well by ourHRMcalculations.

To explore the fulfillment of Keller’s theorem for disordered systemswith differentfilling fractions, we have
varied the radius of thewires/holes for the same ensemblemember as infigure 8 andwe evaluated the deviation
fromKeller’s theorem

K 2
det det

det det
. 64

M M
A B

M M
A B

2 2

2 2

 

 

 
 

D =
-
+

( ˜ ) ( )
( ˜ ) ( )

( )

Infigure 9we showΔK as function of frequency and filling fraction f. For this calculationwe used amoremodest
discretization of only 201×201 pixels. Nevertheless, the deviation away fromKeller’s theorem is very small
except for a few resonances at the smallestfilling fractions f=0.1 forwhich the pixelated representation of the
wires and holes is inadequate.

We have verified that ourHRMcalculations for this system also satisfy Keller’s theorem after averaging over
a large enough ensemble.

3.5. Convergence acceleration
Keller’s theoremmust hold for the exact non-retardedmacroscopic dielectric tensors M

E and M
Ẽ of a binary 2D

composite and its reciprocal system, but itmaywell fail for the dielectric tensors M and M̃ obtained from an
approximate numerical calculation. If wewrite the exact dielectric tensor of a system and its reciprocal as

, , 65M
E

M M M
E

M M     d d= + = +˜ ˜ ˜ ( )

we canwrite equation (42), as

R R , 66M M M M
t

A B     d d+ + =( ) ( ˜ ˜ ) ( )

that linearizing in Md and Md ˜ becomes a systemof four equations
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in the six complex unknowns M
xxd , M

xy
M
yx d d= , M

yyd , M
xxd˜ , M

xy
M
yx d d=˜ ˜ , and M

yyd˜ , whichwewrite as the
matrix equation

MI D, 68= ( )

Figure 9.ΔK as function of frequencyω andfilling fraction f for the same realization of the disordered system as infigure 8 but
calculated in a unit cell of only 201×201 pixels.
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Although equation (68) is under-determined and does not have a unique solution, onemay attempt to obtain
the smallest corrections Md and Md ˜ that when added to the approximate results M and M̃ yield response
functions that better fulfill Keller’s theorem and thatmay thus be expected to better approximate the exact
results. To that endwe perform a singular value decomposition [30]

M U V , 72tS= ( )

whereU andV are column-orthogonalmatrices andS is a diagonalmatrix, obtaining

I V U D. 73t1S= - ( )

To illustrate the use of Keller’s theorem to improve the convergence of numerical calculations we use the
HRM tomake crude calculations of òM and M̃ and then correct our calculations using the procedure above to
get better approximations forwhich the deviations fromKeller’s condition is smaller.

Infigure 10we show the deviation fromKeller’s condition for a systemmade up of square Si prisms
randomly occupying the sites of a square arraywithin vacuum,with afilling fraction f=1/2.We see that adding
the correction (73) diminishes the deviation fromKeller’s condition bymore than four orders ofmagnitude,
from the order of 10−3 to the order of 10−7, or better.We remark that this is an isotropic system symmetrical
under the interchange of components for which the exact dielectric response is completely determined by
Keller’s theorem through equation (47).

Nowwe turn our attention to a systemproposed byMortola and Steffé [4] consisting of a square array of
square prismswithfilling fraction f=1/4. It turns out that this systemhas the exact solution [5]
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It has been shown [31] that theHRM is capable of reproducing numerically this results, even formetallic phases.
Infigure 11we display the relative error of the numerical calculation of themacroscopic response of a systems
made up of a square lattice of square Si prismswith afilling fraction of f=1/4 calculatedwith an extremely
small number ofHaydock pair of coefficients n=2 and n=3.Not surprisingly, the crude numerical results
have a large discrepancy of a few percent from the exact result. Nevertheless, an order ofmagnitude accuracy
increase is obtained by applying the correction (73). Furthermore, better initial results benefit from even higher
accuracy increases.

4. Conclusions

Weobtained a version of Keller’s theorem relating themacroscopic dielectric tensor M of 2Dbinary composite
systems to the corresponding response M̃ of their reciprocal systems, with the same geometry but with their two
components interchanged. The derivation assumes that the texture of the systemhas a lengthscale that ismuch
smaller than thewavelength of light, but otherwise, is valid for finite frequencies andmay be applied to
dispersive and dissipativematerials.We obtained results for the generic anisotropic case, and special results for
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the isotropic case and for systems symmetric under interchange ofmaterials. Our results are based on a general
homogenization procedure that does not require the fields to be irrotational or solenoidal, as wemake no
assumption about the absence of sources in the derivation. AlthoughKeller’s theorem is frequently stated in
terms of the electrical conductivity Ms , we show that in general this response only obeys Keller’s theorem in the
limit of very low frequencies. Nevertheless, we obtained a generalization of Keller’s theorem for the conductivity
atfinite frequencies.We developed a few applications of Keller’s theorem. Thuswe showed that the expression
for the response of a 1D superlattice perpendicular to its axis is determined by its response along its axis.We
verified that common effectivemedium theories, such asMaxwell Garnett’s and Brugemman’s expressions, do
obeyKeller’s theorem.We showed howonemay employKeller’s theorem to check the accuracy of numerical
computations andwe showed that for each resonance of an isotropic system there is a corresponding resonance
of the reciprocal systemdescribed by a corresponding spectral variable andwith the samemicroscopic field
distribution.We illustrated the use of Keller’s theorem to testmodel calculations for ordered, disordered,

Figure 10.Absolute value of the different components of the departure of the computed dielectric tensors M and M̃ fromKeller’s
theorem (42) for an ensemble of one hundred realizations of a random checkerboardwith ten thousand particles each consisting of Si
prismswithin vacuum.The bottompanel panel shows the result of theHRMcalculation and the upper panel the result after adding
corrections from equation (73).

Figure 11.Relative difference between the dielectric function of òM calculatedwith theHRM for a square array of square Si prismswith
filling fraction f=1/4within vacuum, and the exact response (74) before (solid lines) and after (dashed lines) the correction (73) is
applied. TheHRMcalculationswere performedwith an extremely small number ofHaydock iterations: 2 for the lower panel and 3 for
the upper panel.
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isotropic, and anisotropic systems. Finally, we showed that Keller’s theoremmay be employed to increase the
accuracy of approximate numerical calculations.
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Appendix. Anisotropicmaterials

If thematerialsA andBwere themselves anisotropic, then instead of equation (29)wewould have

r B r B r B r B rU U1 1 , A.1A B A A B B    = - + = - +
    ( ) ( ( )) ( ) ( ( )) ( ) ( )

where U , ºa a a ( A B,a = ), det  ºa a and Ua is a uni-modularmatrix, Udet 1=a . Then,

, A.2
A B

1 
 

=- ˜ ( )

where

B r B rR U U R1 A.3B A
t

A B
t t  = - +

 ˜ ( ( ( )) ( )) ( )

is the response of the reciprocal systemobtained by interchanging the scalar responses ofA andB and
transposing and rotating their orientation dependence (butwithout interchanging it). Fromhere, we can follow
all steps of section 2 from equation (32) to themain result (42) [6]. The only difference being themore
complicated and somewhat artificial definition of the reciprocal system above. Some simplificationsmay be
donewhen considering the symmetric nature of thematrix Ua, and in the special case where U UA B= .
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