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ARTICLE INFO ABSTRACT

Keywords: Rice is the most consumed food worldwide, therefore its designation of origin (PDO) is very useful. Laser-
Food authenticity induced breakdown spectroscopy (LIBS) is an interesting analytical technique for PDO certification, since it
PDO provides fast multielemental analysis requiring minimal sample treatment. In this work LIBS spectral data from
Brown rice

SD-LIBS
Pattern recognition

rice analysis were evaluated for PDO certification of Argentine brown rice. Samples from two PDOs were ana-
lyzed by LIBS coupled to spark discharge. The selection of spectral data was accomplished by extreme gradient
boosting (XGBoost), an algorithm currently used in machine learning, but rarely applied in chemical issues.

Emission lines of C, Ca, Fe, Mg and Na were selected, and the best performance of classification were obtained
using k-nearest neighbor (k-NN) algorithm. The developed method provided 84% of accuracy, 100% of sensi-
tivity and 78% of specificity in classification of test samples. Furthermore, it is simple, clean and can be easily

applied for rice certification.

1. Introduction

Rice is an important staple food around the world. The cereal is rich
in vitamins, fibers and essential minerals, making it a high nutritional
value food. The nutritional properties, and therefore the quality of rice
is related to its geographical origin. Thus, it is highlighted the need for
controlled labeling to protect the authenticity of rice (Ariyama,
Shinozaki, & Kawasaki, 2012; Promchan, Giinther, Siripinyanond, &
Shiowatana, 2016). Many countries have adopted for different food a
controlled labeling based on protected designation of origin (PDO). The
PDO information is a guarantee of the quality, tradition, and authen-
ticity, and therefore food safety. In addition, PDO is also used as a brand
strategy influencing the customer final decision (Dias & Mendes, 2018).

Worldwide several studies have been carried out aiming to de-
termine the geographic origin of agricultural products (Becerra-herrera
et al., 2018; Canizo, Escudero, Pérez, Pellerano, & Wuilloud, 2018;
Magdas, Feher, Dehelean, & Cristea, 2018; Monahan, Schmidt, &
Moloney, 2018; Moncayo, Rosales, Izquierdo-hornillos, Anzano, &
Caceres, 2016; She et al., 2019). Particularly for rice, the combination
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of pattern recognition algorithms with multielemental techniques has
been predominantly applied. To this purpose the most commonly used
analytical techniques are inductively coupled plasma optical emission
spectrometry (ICP OES) (Chung, Kim, Lee, & Kim, 2015) and in-
ductively coupled plasma mass spectrometry (ICP-MS) (Ariyama et al.,
2012; Cheajesadagul, Arnaudguilhem, Shiowatana, Siripinyanond, &
Szpunar, 2013; Maione, Batista, Campiglia, Barbosa, & Barbosa, 2016).
Although these techniques require a complex sample pre-treatment,
they provide access to the sample elemental composition supplying a
kind of fingerprint of the samples, which is useful for the food au-
thentication.

Laser-induced breakdown spectroscopy (LIBS) is also a multi-
elemental technique able to supply a fingerprint of sample composition.
The advantage of LIBS over the aforementioned techniques is that LIBS
is able to perform direct analysis, demanding minimum or no sample
preparation and no generation of waste after analysis (Cremers &
Radziemski, 2006; Miziolek, Palleschi, & Schechter, 2006). LIBS data
assisted by chemometric methods have been successfully applied in
different troubleshoot of classification, including classification based in
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Fig. 1. Geographical regions selected for PDO rice sampling in Corrientes Province, Argentina.
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Fig. 2. LIBS (A) and SD-LIBS (B) spectra obtained from a brown rice sample.

PDO of different food samples (Bassbasi, Luca, loele, Oussama, &
Ragno, 2014; Kumar et al., 2011; Moncayo, Manzoor, & Caceres, 2015;
Moncayo et al., 2016; Zhang, Xia, Tang, Yang, & Li, 2016; Zhang, Shen,
Liu, & He, 2018). Recently, Yang and collaborators have evaluated LIBS
data processed by several chemometric algorithms to study the Chinese
rice sample classification (Yang, Zhou et al., 2018; Yang, Zhu et al.,
2018). In these studies, the number of inputted parameters for mathe-
matical modeling was larger than the available samples. According to
Hastie and collaborators (Hastie, Tibshirani, & Friedman, 2008), sta-
tistical models that contain more variables than can be justified by the
data are prone to overfit, low capacity of generalization and weighting
of spurious variables. Therefore, a suitable method for features

selection is crucial, specially for spectra containing a large number of
variables, like that provided by LIBS.

The extreme gradient boosting (XGBoost) is an algorithm also
known as gradient boosted trees (GBT). Besides being an excellent
classifier, it can be used to optimize and select features. Feature se-
lection accomplished by XGboost is based on the action of boosting,
where a weak learner can be modified to become better. In gradient
boosting, weak learners are decision trees with a single split, called
decision stumps. The great advantage of this method is that the im-
portance of the variables for the classification models can be retrieved
from the decision trees construction. In addition, the feature im-
portance is estimated from trained predictive models and these tasks
can be automatized. The variable importance means how useful it was
to the model construction. The higher times the variable is used, the
more important it is (Brownlee, 2017; Hastie et al., 2008). XGBoost is
currently used by machine learning enthusiasts (Mustapha & Saeed,
2016; Torlay, Perrone-Bertolotti, Thomas, & Baciu, 2017; Zheng, Yuan,
& Chen, 2017; Wang, Liu, & Deng, 2018), but very rarely used in
chemical issues. In the best of our knowledge it has never been used to
select variables from LIBS spectral data.

Considering the above, the aim of the present work was to develop a
new method to determine PDO of Argentinean brown rice using LIBS as
analytical technique and XGBoost for the spectral features selection to
be used in the classification model fitting.

2. Material and methods
2.1. Rice samples
Brown rice of the species Oryza sativa L., coming from the north-

eastern of Argentine, was evaluated. A total of 66 samples were col-
lected from rice fields located in two main producing regions of
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Performance evaluation measurements (Feature importance and F-Score metric) for variables selection by using XGBoost algorithm and identification of the selected

spectral lines.

Variable Importance F-score Maximum Minimum Spectral line Element
1 0.215 61 X 335.3 Fel

2 0.125 36 X 229.7 Fel

3 0.112 34 X 247.8 CI/Fell
4 0.075 22 X 588.9 Nal

5 0.070 21 X 409.8 Cal

6 0.068 20 X 464.3 Fel

7 0.060 18 X 374.8 Fel

8 0.037 11 X 280.2 Mg II

9 0.035 10 X 463.1 Mg II
10 0.017 9 X 229.7 Fel

Note: (I) indicates atomic spectral lines and (II) indicates ionic spectral lines.
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Fig. 3. Scatter plot of the first two discriminant functions obtained from LDA
model to discriminate brown rice based on their PDO.

Table 2
Results of the classification metrics calculated for different evaluated models.

Algorithms  Parameters” Accuracy (%)  Sensitivity (%)  Specificity (%)
LDA - 53 70 33
k-NN k=7 84 100 78
SVM C=0.8; 74 90 44
e = 0.075
RF nt = 500; 57 70 44
mtry = 1

? k: number of k neighbors; nt: number of trees; mtry: number of variables
tried at each split; C: penalty factor; : € -insensitive loss function.

Corrientes province: thirty-five samples came from PDO Mercedes (29°
12’ S, 58° 05’ W) and thirty-one samples came from PDO Berén de
Astrada (27° 33’ S, 57° 32’ W). All samples coming from the harvest of
2017. In Fig. 1 are shown the geographical locations of the producing
regions with protected designation of origin.

The collected rice samples were peeled and were singly ground
using a cryogenic mill from Spex 6750 (Metuchen, NJ, USA). The set
grinding program consisted of 2.0 min for pre-freezing, 2.0 min for
grinding and 3.0min for freezing between the two milling steps.
Around 250 mg of each homogenized sample were made into pellets by
applying 10 tons using a mechanical press (Solab SL - 10/15,
Piracicaba, Brazil). Two pellets were prepared for each of the 66 sam-
ples.

2.2. LIBS experimental setup and measurements

The LIBS system used for pellets analysis comprises a Q-switched
laser Nd:YAG (Quantel, Big Sky Ultra 50, Bozeman, USA) emitting
pulses at 1064 nm, lens for laser focalization (focal distance of 10 cm),
an ablation chamber, a mobile sample holder with adjustment on the x
and y axes, an optical system made up of lens and optical fiber bundle
to collect plasma emission and drive it to the spectrometers. The plasma
emission was collected by means of an optical fiber bundle and con-
ducted to four spectrometers, Ocean Optics (HR2000 +, Dunedin, USA).
The spectrometers optical resolution was 0.1 nm FWHM (full width at
half maximum) and the spectral range measured for this instrument is
200 to 630 nm. All measurements were performed using laser pulse
energy around 50 mJ, with 20 ns pulse duration. The interaction laser-
sample provides a spot diameter around 300 um, resulting in an irra-
diance in the focal point around 0.35 TW cm 2. The delay time (re-
lative to a Q-switch delay) was set to 1 ps and the integration time is
instrumentally fixed at 1 ms.

Aiming to improve the sensitivity of measured spectrum, a system
able to promote a spark discharge (SD) on the plasma, previously de-
scribed by Vieira et al. (2018), was used coupled to the LIBS system
above described. The discharge output was set to 4.5kV and SD-LIBS
spectra were acquired by applying 40 laser pulses spread on the surface
of each pellet.

2.3. Data processing

Aiming to minimize undesirable fluctuation effects in LIBS spectra,
due to laser pulses fluctuation and different laser-sample interaction,
which occurs at each pulse (Miziolek et al., 2006), the spectra were
individually transformed by the first derivative. Each prepared pellet
was represented by an average of derived spectra (n = 40). Further an
average of two pellets spectra was assessed for statistical inference of
sampling behavior. For features selection step, the derived spectral data
were autoscaled, to equalize the ranges of variability in prediction re-
sults.

Thereafter, XGBoost, available in the XGBoost Python package, was
applied to select descriptors from the entire spectral range. The de-
scriptors corresponded to the maximum and/or minimum variation
ratio of derived spectra. For XGBoost algorithm application, the data
matrix was randomly divided into two subsets, which consisted of a
training set (70% of the samples) and a test set (the remaining 30%).
The hyperparameters needing optimization included the number of
trees (nt) and the learning rate (Ir). These parameters were calculated
during the training step by ten-fold cross-validation. Then, the method
performance was measured from the feature importance and F-Score
metric values. A detailed description regarding the calculation of the F-
Score statistic can be found from Maione et al. (2016).

After features selection, the samples spectra were again divided in
sets of calibration (training) and validation (testing). For calibration set
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Table 3
Analytical methods evaluating the geographical authenticity of rice samples.
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Classification criteria® Rice geographical origin

Reference Analytical technique® Chemometric technique”
Ariyama et al. (2012) HR-ICP-MS LDA-SIMCA-k-NN
Promchan et al. (2016) LA-ICP-MS LDA

Chung et al. (2015) ICP OES PLS-DA

Maione et al. (2016) ICP-MS RF

Cheajesadagul et al. (2013) HR-ICP-MS DA

Chung et al. (2018) IRMS and ICP-MS OPLS-DA

Kukusamude and Kongsri (2018) INAA and EA-IRMS LDA

Gonzalvez, Armenta, and Guardia (2011) ICP OES LDA

Li et al. (2012) ICP-MS and ICP OES DFA and FIA

Qian et al. (2019) HR-ICP-MS DA

Teye, Amuah, McGrath, and Elliott (2019) NIR k-NN

Hwang, Kang, Lee, and Chung (2012) Raman LDA

Zhu et al. (2018) Raman SIMCA

Li et al. (2018) XRF Raman KMC-

Proposed method SD-LIBS XGBoost and k-NN

ACC: 97.0% Japan, United States, China and Thailand
ACC: 91.1% Thailand

- Korea, China and Philippines

ACC: 93.8% Brazil

OCL: 90.3-100%
Q?Y: 0.834-0.963

Asia, Europe and Thailand
Cambodia, China, Japan, Korea, Philippines and

Thailand
ACC: 95.5% Thailand
ACC: 91.3% Brazil, India, Japan and Spain
- China
OCI: 89.6-96.6% China
ACC: 90.6% Ghana, Thailand and Vietnam
DE: 1.61-9.97% China and Korea
RR: 95.4% China
ACC: 60-85.7% China
ACC: 84.0% Argentina

2 EA-IRMS: elemental analyzer isotope ratio mass spectrometry; HR-ICP-MS: high-resolution inductively coupled plasma mass spectrometry; ICP OES: inductively
coupled plasma optical emission spectrometry; INAA: instrumental neutron activation analysis; LA-ICP-MS: laser ablation inductively coupled plasma mass spec-
trometry; NIR: near infrared spectrometry; Raman: Raman spectroscopy; SD-LIBS: spark discharge-laser-induced breakdown spectroscopy; XRF: X-ray fluorescence.

> DA: discriminant analysis; DFA: discriminant function analysis; FIA: Fibonacci index analysis; HC: hierarchical clustering; k-NN: k-nearest neighbors; KMC: k-
means clustering; LDA: linear discriminant analysis; OPLS-DA: orthogonal projection to latent structure-discriminant analysis; PLS-DA: partial least-squares dis-
criminant analysis; RF: random forest; SIMCA: soft independent modeling of class analogy; SVM: and support vector machine; XGBoost: extreme gradient boosting.

© ACC: Accuracy rate; DE: discrimination error; OCL: overall correct identification; Q2Y: proportion of variance in the data predicted by a model; RR rejection rate
(number of identified non-similar samples divided by the total number of unknown samples (non - class)).

25 spectra from PDO Mercedes plus 22 from PDO Ber6n de Astrada
were randomly selected while for validation it was selected 10 from
PDO Mercedes plus 9 from PDO Berdén de Astrada. The division into
subgroups was performed in a stratified manner, so that the proportion
of each class in the original matrix was kept in the new subgroups. In
addition, the samples included in each set were randomly changed for
each reproduced model. This sampling scheme guaranteed the random
sampling consistency.

Algorithms based on pattern recognition were evaluated to fit a
suitable PDO classifier. The following supervised classification algo-
rithms were evaluated: linear discriminant analysis (LDA), support
vector machine (SVM), k-nearest neighbors (k-NN), and random forest
(RF). The different classification models were validated by ten-fold
cross-validation. An unknown group of samples belonging to known
classes were used to assess the performance of the fitted models. All
calculations for classification modeling were made using R-project
software version 3.3.3 (R Core Team, 2017). The performance of the
classification models were compared using the metrics of overall ac-
curacy (all correct predictions divided by the total number of examined
cases), sensitivity (correct positive predictions divided by the number of
positive cases), and specificity (correct negative predictions divided by
the number of negative cases) (Lantz, 2015).

3. Results and discussion

An initial assessment of the LIBS performance in rice analysis in-
dicated low sensitivity of the available LIBS system. Aiming to improve
the sensitivity of measurements a SD device previously proposed (Vieira
et al., 2018), was coupled to the LIBS system. The coupling has reached
its goal as can be seen in Fig. 2, therefore it was set as instrumental
analytical condition.

After data acquisition spectral preprocessing was performed to
minimize characteristic fluctuations of LIBS spectra that could affect the
performance of the classification models. The first derivative transfor-
mation was applied to each individual spectrum because this pre-
processing method has been demonstrated effectiveness and simplicity
of application (Silva et al., 2017).

Considering many inputted variables can hinders the successful
performance of the classification models (Hastie et al., 2008), the

XGBoost algorithm was evaluated for spectral feature selection. The
results obtained by applying the XGBoost algorithm in the set of
training samples are shown in Table 1. The best performance for this
feature selection was reached when the hyperparameters nt = 100 and
Ir = 0.1 were used. In this particular case, since the learning rate value
was less than 1.0, the modeling have the effect of making the correc-
tions for each tree added of the model (Brownlee, 2017). As can be
observed in Table 1, ten variables obtained from maximum and
minimum values from derived spectra were selected. According to the
database of the National Institute of Standards and Technology (NIST,
2018), the selected variables corresponded to the emission lines of C,
Fe, Ca, Na and Mg. These findings corroborate those observed by
Maione et al. and Promchan et al. wherein Ca, Fe, Mg, and Na were also
important elements for classification of Brazilian (Maione et al., 2016)
and Thai (Promchan et al., 2016) rice, according to geographic origin.
Moreover, the F-Score shows that Fe is the most important element to
distinguish the evaluated classes with 59.5% of total importance, fol-
lowed by C (plus Fe) with 14%, Na, 9.1% and Ca and Mg, both showing
8.7% of total importance.

Thereafter, the selected data were used to fit four different classi-
fiers (LDA, RF, SVM and k-NN). In Fig. 3 are shown the patterns dis-
tribution of brown rice samples according to their PDO defined by the
first two discriminant functions of LDA fitted model. A notably dis-
crimination between the two studied groups can be observed in the
whole set of samples with PDO Mercedes showing positive and negative
scores on LD2 and PDO Ber6n de Astrada showing the majority of ne-
gative scores with a few positive scores on LD2. Nevertheless, the
prediction accuracy in the testing set was 53%, indicating the PDO
brown rice samples were not successfully classified.

Therefore, k-NN, SVM and RF non-linear algorithms were also
evaluated. In Table 2 are shown the classification metrics calculated for
each fitted model, including LDA linear algorithm.

The better classification metrics were obtained for k-NN, SVM and
RF. These findings suggest non-linear models fit better the behavior of
C, Fe, Ca, Na and Mg in the two PDO evaluated. The highest accuracy in
prediction of test samples were given by SVM (74%) with radial basis
kernel function using hyperparameters C = 0.8 and ¢ = 0.075 and k-
NN (84%) with an optimized neighbofs number of seven. The best
model for differentiating brown rice samples according to their PDO
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was k-NN. This model also showed the highest sensitivity (100%) and
specificity (78%), compared to the other methods studied.

A comparison of the performance of the proposed method, with
methods previously described for the rice geographical authenticity is
given in Table 3.

Each method uses as variables specific properties provided by the
different employed analytical techniques. All classification methods are
multivariate, suggesting more than one feature is frequently required to
perform geographical classification of rice. For the several evaluated
methods, analytical performance in terms of accuracy ranged from 60
to 97%, indicating the suitability of the proposed method. Compared to
the methods using multielement techniques (e.g. ICP OES and ICP MS)
the SD-LIBS is faster and more environmentally friendly, since it dis-
penses complexes sample pretreatments and the use of any chemical
reagent.

4. Conclusions

Spectral fingerprints of brown rice obtained by SD-LIBS were in-
vestigated to discriminate samples according to their PDO. XGBoost
algorithm were used for the first time to select relevant features from
LIBS spectra. The analysis of F-Scores of the variables suggested that Fe
were the most important element to discriminate the studied PDOs. The
other elements presented the following order of importance:
C > Na > Ca = Mg. The evaluated algorithms for classification sug-
gested the amounts of selected elements changes in a non-linear fashion
for the evaluated PDOs. Moreover, a non-linear classifier based on k-NN
showed the best classification performance, achieving 84% of accuracy
in prediction of test samples. The developed method is simple, fast and
reliable approach, demands minimal sample preparation and does not
produce waste after analysis. Its application can help to identify rice
mislabeling protecting market rice brands and preventing consumers
and producers from financial damage.
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