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This paper proposes amultiway calibration strategy implementing themodelingwithMCR-ALS andU-PLS/RBL of
second-order chromatographic data for quantitation of six analytes: gliclazide, glibenclamide, glimepiride, aten-
olol, enalapril and amlodipine in serum samples, in an analysis time of 3 min.
The performance of both algorithms was compared in terms of predictive ability, showing relative error of pre-
diction values below 10% in all cases. LOD values calculated are below 30 ng mL−1 for all the studied drugs,
which allow detection in human serum in patients under treatment. U-PLS/RBL has higher sensitivity and better
detection and quantification limits for all the studied analytes; however results obtained by MCR-ALS enable its
usage as well. Both methods provide comparable results for glibenclamide, glimepiride and gliclazide. With this
multiway calibration strategy, the presence of enalapril, amlodipine and atenolol could be quantitatedwith high
accuracy. Run time was reduced by 50% considering previous reports, as well as reduction of solvents, in accor-
dance with green chemistry principles.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

Diabetes is a disease affecting 9% of the Argentinian population [1].
Type II diabetes is the most common form of diabetes in which cellular
resistance to insulin and insufficient pancreatic secretion derive in hy-
perglycemia. In order to diagnose and treat type II diabetes properly, it
is mandatory to develop analytical methods for management and phar-
macological treatment monitoring.

Sulfonylureas are oral antidiabetic drugs that increase insulin release
form pancreatic beta cells. Gliclazide, glibenclamide and glimepiride are
second generation sulfonylurea drugs used as initial treatment of type II
diabetes in patients who cannot control hyperglycemia with diet and
exercise [2].

Diabetic patients also have a high prevalence of hypertension.
Pharmacological therapy frequently combines antihypertensive
and antidiabetic drugs [3]. Atenolol belongs to the beta blocker drug
group; enalapril is an angiotensin-converting enzyme inhibitor; and
itoral, Facultad de Bioquímica y
uimiometría (LADAQ), Ciudad

ea).
amlodipine is a calcium channel blocker, all of thesewith antihyperten-
sive action. Usual seric concentration of the three antihypertensive and
the three antidiabetic analyzed drugs are: atenolol 0.30–0.70 μg mL−1;
amlodipine 0.004–0.017 μg mL−1; enalapril 0.l5–0.30 μg mL−1;
gliclazide 2.00–8.00 μg mL−1; glibenclamide 0.14–0.35 μg mL−1; and
glimepiride 0.20–0.31 μg mL−1 [4].

In a previous work, we developed a novel dispersive liquid–liquid
micro extraction (DLLME) procedure and a HPLC–UV method, opti-
mized and fully validated for the determination of gliclazide,
glibenclamide and glimepiride in serum, in the presence of atenolol,
enalapril and amlodipine. The advantages of the latter method are sim-
plicity of operation, rapidity, low cost, high–recovery, high enrichment
factor, and environmental benignity fitting the requirements of green
analytical chemistry [5].

Multivariate calibration strategies are quickly gaining attention in
analytical chemistry, given the possibility of quantifying analytes in
complex matrixes in the presence of interferents. If one calibrates
with pure analyte standards, matrix data is recorded and sufficient se-
lectivity is present in the various datamodes; it is possible to predict an-
alyte concentration in any future sample, no matter how many signal-
overlapping constituents. This is referred to as the “second order advan-
tage”, the signal from unexpected constituents can be modeled and
mathematically removed, in such away that their effect is negligible [6].
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An important number of algorithms have been used in order to ex-
ploit the second-order advantage: generalized rank annihilation
(GRAM) [7], direct trilinear decomposition (DTLD) [8], self-weighted al-
ternating trilinear decomposition (SWATLD) [9], alternating penalty tri-
linear decomposition (APTLD) [10], parallel factor analysis (PARAFAC)
[11], multivariate curve resolution alternating least squares (MCR–
ALS) [12], bilinear least squares (BLLS) [13], unfolded partial least
squares/residual bilinearization (U–PLS/RBL) [14] and artificial neural
networks followed by residual bilinearization (ANN/RBL) [15].

In this paper, a multiway calibration strategy implementing two
well-known algorithms (MCR-ALS and U-PLS/RBL) are proposed for
quantitation of gliclazide, glibenclamide, glimepiride, atenolol, enalapril
and amlodipine in serum samples, in a shorter analysis time than that
previously reported [5].

2. Theory

2.1. MCR-ALS

This algorithmworks on a data set by optimizing initial estimates in
an ALS way within each iterative cycle under the action of suitable con-
straints until a convergence criterion is fulfilled [16].

Each HPLC-DAD chromatographic run of a single sample provides a
data matrix, indicated as D (J × K), where the J rows representing the
UV spectra recorded at the different elution times and the K columns
representing the chromatographic elution profiles recorded at the dif-
ferent wavelengths. This corresponds to a bilinear model based on the
multi wavelength extension of Beer's absorption law:

D ¼ CST þ E ð1Þ

where C (J × N) is the matrix of elution profiles of the analyzed com-
pounds and ST (N × K) is the matrix of their pure spectra. N is the num-
ber of components.

Multiset structures are obtained combining several chromatograph-
ic runs. These structures are organized appending the Di data matrices
(the index i indicates a chromatographic run for a specific sample)
one on top of each other. The resulting Daug (column-wise augmented)
multiset can be decomposed into the Caug matrix, which contains the Ci
submatrices of the resolved elution profiles for the single chromato-
graphic runs, ST the matrix of pure spectra common to all chromato-
grams analyzed and Eaug, the difference between the raw data and the
reconstructed data by the CaugST model, i.e., the experimental error
not explained by the bilinear model. This bilinear model assumes that
the components in the Di data matrices included in the column-wise
augmented data matrix share the same pure spectra, whereas they
can have different concentration profiles.

TheMCR-ALS algorithm calculatesCaug and ST from the sole informa-
tion in the experimental data, Daug. The first step is to determine the
number of eluted compounds present in a particular cluster of peaks,
i.e., the “chemical rank” associated with the data matrix. This determi-
nation is performed with a principal component analysis on the Daug

matrix. Then, an initial estimate of the ST matrix is obtained with tech-
niques based on the detection of purest variables [17]. These initial
spectral estimates are iteratively optimizedwith a constrained alternat-
ing least squares regression procedure.

The iterative optimization is performed until the results agree with
the convergence criterion, which often means that the difference in
lack of fit between two consecutive iterations is below a predefined
threshold (0.01% change in standard deviation). The lack of fit (%LOF)
and the explained variance (EV) express thefitting quality of the resolu-
tion results; they are used to choose the best MCR-ALS model for each
chromatographic segment.

Several constraints can be applied to confer chemical meaning to
the profiles obtained by MCR-ALS in the analysis of a single HPLC-DAD
run, such as non-negativity, unimodality, spectral normalization and
component correspondence in order to reduce the effects of rotational
ambiguity.

Finally, the areas under the matrix Daug are used to build a
pseudounivariate plot relating them with the nominal concentrations
of the standards. This plot is then used to predict the analyte concentra-
tion in the unknown sample.

2.2. U-PLS/RBL

Unfolded partial least-squares (U–PLS) is a powerful algorithm for
processing vectorial signals per sample, it provides multiway data pro-
cessing with enough flexibility to face calibration protocols based on
complex data [16]. It is complemented by residual bilinearization
(RBL) which models the residues of U-PLS for the test sample as a sum
of bilinear contributions from the unexpected components.

The first step in U-PLS calibration is to convert the calibration data
arrays into vectors. This will produce a JK × 1 vector from a J × K data
matrix. A new calibration matrix Xcal, suitable for the application of
PLS regression, is built by placing all column vectors adjacent to each
other. The latter Xcal matrix can therefore be of size JK × I (I= number
of calibration samples) for second-order data, and is subjected to the
classical PLS regression analysis.

As it iswell-known for PLS, a set of loadingsP andweight loadingsW
(JK × A, where A is the number of latent variables) as well as regression
coefficients v (sizeA×1) are obtained after the calibration step. Usually,
the leave-one-out cross-validation procedure is implemented for
selecting the parameter A [18]. Subsequently, v is employed to estimate
the analyte concentration through the following equation:

yu ¼ tuTv ð2Þ

where tu (size A × 1) is the test sample score, obtained by projection of
the (unfolded) data for the test sampleXu [vec(Xu)] of size (JK× 1) onto
the space of the A latent factors:

tu ¼ WTP
� �–1

WTvec Xuð Þ ð3Þ

If the sample contains unexpected components, the scores given by
Eq. (3) are not suitable for analyte prediction using Eq. (2), generating
abnormally large residuals in comparison with the typical instrumental
noise assessed by replicate measurements.

RBL intends to model the residuals assuming that they can be ar-
ranged into a bilinear matrix. This procedure fits the sample data to
the sum of two contributions: 1) the portion of the test data, which
can be explained by the calibration PLS loadings, and 2) the contribution
from the potential interferents modeled by a certain number of princi-
pal components (NRBL). The complete U-PLS/RBLmodeling equation in-
volves a residual error term to be minimized by least squares:

Xu ¼ reshape PtRBLð Þ þ BRBLTRBL
T þ ERBL ð4Þ

The product (BRBLTRBLT ) is the principal component analysis (PCA)
model for the residual matrix [(Xu–reshape(PtRBL)] with NRBL principal
components, with “reshape” meaning the transformation JK × 1 vector
into a J × K data matrix. Minimization of ERBL allows one to retrieve
the final score vector tRBL. Initially, the residual matrix contains contri-
butions from both the calibrated analytes and the potential interferents.
Modeling this lattermatrixwith PCA extractsNRBL bilinear components;
themore these bilinear components resemble the unexpected contribu-
tions, the better the product is able to model the behavior of the
analytes in the test sample, leading to a continuous decrease in the
residuals.

Generally RBL can be carried out by a Gauss-Newton minimization.
Once the residuals ERBL are minimized in Eq. (4), the output is a final
tRBL vector which represents the true contribution of the calibrated
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analytes to the test sample. Analyte concentrations are the obtained by
introducing the final tRBL vector instead of t in Eq. (3). While calibration
data are unfolded to be processed by U-PLS with greater flexibility, test
data should be maintained in matrix form in order to be able to apply
PCA within the RBL procedure.
3. Experimental

3.1. Apparatus and software

All experiments were performed using an Agilent 1100 Series liquid
chromatograph equipped with a quaternary pump, degasser mem-
brane, thermostated column compartment, auto sampler and DAD
(Agilent Technologies, Waldbronn, Germany). Multiwavelength infor-
mation was registered every 2 nm between 200 and 400 nm. The
Chemstation version B 0103 was used for data acquisition and process-
ing. The HPLC columnwas a Zorbax C18 (4.6mm× 75mm, 3.5 μmpar-
ticle size) from Agilent.
3.2. Chemicals and reagents

Analytical standards of atenolol, amlodipine, enalapril and
glimepiride were provided by PLAMECOR (Medicinal Plant of Corrien-
tes, Argentina). Glibenclamide and gliclazide were provided by
Roemmers Argentina (Buenos Aires, Argentina). Acetonitrile andmeth-
anol HPLC-grade were obtained from Merck (Darmstadt, Germany).
HPLC-gradewater was obtained from aMilli-Q Biocel System (Millipore
SAS, Molsheim, France). Sodium hydroxide, dichloromethane and
monosodium phosphate of analytical grade were purchased from
Cicarelli (San Lorenzo, Argentina).

Solutions and solvents for mobile phase were always filtered
through 0.45 μm nylon filters. Standards and sample solutions were
also filtered through syringe 0.45 μm nylon membrane before injection
in the chromatographic system. Photometric detection was performed
in the 200–400 nm range.
3.3. Chromatographic conditions

The chromatographic conditions were set based on previous
knowledge about the system [5]. In this work, however, the main
objective was to reduce the run time and, consequently, the amount
of waste solvents. Thus, the mobile phase (isocratic mode) was 37:63
acetonitrile:sodium phosphate buffer 10 mmol L−1 (pH 2.6). Column
temperature was controlled by setting the oven temperature at 30 °C
and the flow rate was maintained at 1.00 mL min−1. An injection vol-
ume of 20 μL was used. The complete analysis was carried out in 3 min.
3.4. Standard solutions

Stock standard solutions of atenolol, amlodipine and enalapril
1.0 mg mL−1 were prepared by exactly weighing and dissolving the
adequate amount of standard in ultrapure water. Glibenclamide stock
solution 1.0 mg mL−1 was prepared by weighing and dissolving the
adequate amount of standard in acetonitrile. Gliclazide stock solution
1.0 mg mL−1 was prepared by weighing and dissolving the adequate
amount of standard in methanol. Glimepiride stock solution
1.0 mg mL−1 was prepared by weighing and dissolving the adequate
amount of standard in NaOH 0.1 mol L−1. These solutions were con-
served at 4 °C in light-resistant containers and allowed to reach room
temperature before use. Calibration standard solutions were prepared
at the moment of use by diluting an appropriate volume of each stock
standard solution in ultrapure water.
3.5. Sample preparation

In a previous work, we developed a novel dispersive liquid-liquid
micro extraction pre-treatment, which was followed herein [5]. Plasma
sample or standard solutions aliquots of 250 μL were transferred into
1.5mL centrifuge tubes, 100 μL of dichloromethane (extractive solvent)
and 1000 μL of acetonitrile (dispersing solvent) were added. Finally, the
samples were vortexed for 1 min, centrifuged at 1000 g for 3 min and
the organic phase was transferred to glass tubes. The organic phase
was finally evaporated to dryness under a gentle stream of nitrogen
gas. The residue was dissolved in 50 μL acetonitrile:sodium phosphate
buffer 10 mmol L−1 pH 2.6 mixture (50:50) and injected into the
HPLC system. Consequently, an enrichment factor of 5 was reached
with the pre-treatment.
3.6. Calibration and validation samples

In our previous work [5] it was demonstrated that there was noma-
trix effect, therefore, calibration and validation setswere prepared in ul-
trapure water. A calibration set of 14 samples that contained the 6
studied drugs was prepared from the diluted solutions in ultrapure
water. The samples of the set corresponded to the concentrations pro-
vided by a central composite design, obtained by combining two central
composite designs of three drugs each, therefore the set contained only
14 samples. The tested concentrations were in the range of 0.06–
2.60 μg mL−1 for gliclazide; 0.03–1.92 μg mL−1 for glibenclamide;
0.04–1.98 μg mL−1 for glimepiride; 0.15–2.75 μg mL−1 for atenolol;
0.08–2.82 μg mL−1 for enalapril and 0.06–2.80 μg mL−1 for amlodipine.

A validation set of 11 samples that contained the 6 studieddrugswas
prepared from the diluted solutions in ultrapure water. The samples of
the latter set corresponded to concentrations provided by a central
composite design. The tested concentrations were in the range of
0.08–1.94 μg mL−1 for gliclazide; 0.09–1.56 μg mL−1 for glibenclamide;
0.13–1.40 μg mL−1 for glimepiride; 0.65–2.61 μg mL−1 for atenolol;
0.5–1.72 μg mL−1 for enalapril and 0.14–2.52 μg mL−1 for amlodipine
(Table 1).

HPLC-DAD matrix data were obtained and subjected to second-
order data analysis.
3.7. Precision and trueness

Recovery was assessed by replicate analysis (n = 3) of spiked sam-
ples at three different concentrations (Table 2), prepared by spiking
blank human plasma with a convenient volume of standard solution.
The samples of the set corresponded to the concentrations provided
by a central composite design. Repeatability was assessed by replicate
analysis of the recovery samples. Relative standard deviation (RSD %)
was calculated.
3.8. Data generation and software

Every data matrix contains 195 rows (elution times) and 101
columns (wavelengths). The total chromatographic data registered
for each sample were partitioned in 2 regions: a) from 0.38 to
1.15 min and 200 to 400 nm (R1 corresponding to antihypertensive
drugs), and b) from 1.22 to 2.18 min 202 to 360 nm (R2 corresponding
to antidiabetic drugs). These regions are shown in Fig. 1. It should be
noted that this was done in order to reduce using non informative
signals.

All employed algorithms were implemented in MATLAB 7.10.0.499
[19] A useful interface for data input and parameters setting, written
by Olivieri et al. [20] was employed for MCR-ALS and U-PLS/RBL
implementation.



Table 1
Predictions on validation samples by modeling second-order data.

Validation sample Atenolol Enalapril Amlodipine Gliclazide Glibenclamide Glimepiride

U-PLS/RBL MCR-ALS U-PLS/RBL MCR-ALS U-PLS/RBL MCR-ALS U-PLS/RBL MCR-ALS U-PLS/RBL MCR-ALS U-PLS/RBL MCR-ALS
Nom Pred Pred Nom Pred Pred Nom Pred Pred Nom Pred Pred Nom Pred Pred Nom Pred Pred

1 2.01 1.97 1.96 1.41 1.45 1.35 1.45 1.46 1.57 1.19 1.25 1.17 1.47 1.42 1.46 0.84 0.76 0.77
2 1.83 1.83 1.92 1.72 1.73 1.63 1.00 0.99 0.94 1.94 2.00 2.06 1.15 1.16 1.18 0.84 0.88 0.90
3 0.65 0.67 0.66 0.88 0.85 0.80 0.14 0.14 0.13 1.13 1.14 1.16 1.18 1.17 1.27 1.40 1.38 1.51
4 1.40 1.42 1.38 0.50 0.51 0.46 1.18 1.16 1.13 1.13 1.08 1.11 1.18 1.19 1.21 1.40 1.33 1.45
5 1.83 1.84 1.86 0.88 0.92 0.83 1.73 1.78 1.83 1.84 1.83 1.67 0.12 0.15 0.11 1.40 1.35 1.35
6 1.02 1.05 1.07 0.65 0.66 0.64 1.73 1.74 1.74 1.30 1.36 1.33 0.09 0.10 0.09 0.54 0.60 0.62
7 1.77 1.78 1.62 1.72 1.62 1.73 0.84 0.84 0.78 1.92 2.12 1.98 1.56 1.57 1.64 0.13 0.13 0.14
8 2.01 1.94 2.04 1.05 1.01 1.05 1.45 1.35 1.43 1.19 1.18 1.04 1.47 1.48 1.50 1.20 1.12 1.15
9 1.02 1.07 0.92 1.05 0.98 1.09 1.00 1.13 0.93 0.08 0.08 0.07 1.47 1.46 1.52 1.40 1.34 1.45
10 1.45 1.31 1.42 0.50 0.47 0.54 1.00 1.02 1.13 1.19 1.10 1.18 0.92 0.99 0.95 0.84 0.89 0.80
11 2.01 1.84 2.17 1.41 1.37 1.56 2.52 2.66 2.36 0.08 0.10 0.07 0.18 0.16 0.18 0.16 0.14 0.17
RMSEa 0.07 0.08 0.05 0.07 0.07 0.09 0.08 0.08 0.03 0.04 0.05 0.06
REP%b 4.76 5.32 4.31 6.18 5.28 6.77 6.36 6.87 2.98 4.43 5.87 6.44
Mean recovery (RexpÞ 99.1 99.8 98.5 99.0 101.4 98.9 103.2 96.6 102.8 101.6 98.1 102.7

Standard deviation of recovery (SR) 4.7 5.5 4.0 6.4 4.9 7.1 8.7 7.1 9.3 4.1 7.0 7.0
texp

c 0.66 0.10 1.29 0.51 0.92 0.49 1.24 1.57 1.00 1.30 0.91 1.29

Nom: nominal concentration (μg mL−1) and Pred: predicted concentration (μg mL−1).
a RMSE: Root mean square error, RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
T∑

I
1 ðcnom−cpredÞ2

q
, where I = 11.

b REP: Relative error of prediction, REP ¼ 100� RMSE
c , where c is the mean calibration concentration.

c Experimental texp value, texp ¼ j100−Rexpj
ffiffiffi
N

p
SR
, where N = 11 is the number of validation samples. (Critical value t(0.025,10) = 2.228).

Table 2
Recovery study in spiked basal plasmaa.

Sample Atenolol Enalapril Amlodipine Gliclazide Glibenclamide Glimepiride

U-PLS/RBL MCR-ALS U-PLS/RBL MCR-ALS U-PLS/RBL MCR-ALS U-PLS/RBL MCR-ALS U-PLS/RBL MCR-ALS U-PLS/RBL MCR-ALS
Taken Found Found Taken Found Found Taken Found Found Taken Found Found Taken Found Found Taken Found Found

T1_1 0.61 0.61 0.63 0.50 0.51 0.46 0.45 0.48 0.43 0.23 0.25 0.22 0.33 0.35 0.34 1.07 1.02 1.02
T1_2 0.61 0.62 0.61 0.50 0.50 0.51 0.45 0.47 0.48 0.23 0.24 0.21 0.33 0.33 0.32 1.07 1.05 1.05
T1_3 0.61 0.60 0.62 0.50 0.53 0.48 0.45 0.44 0.45 0.23 0.22 0.21 0.33 0.34 0.33 1.07 1.02 1.06
T2_1 0.80 0.86 0.76 1.41 1.47 1.35 1.92 1.94 1.84 1.32 1.36 1.29 0.17 0.17 0.16 0.63 0.63 0.60
T2_2 0.80 0.83 0.78 1.41 1.39 1.38 1.92 1.89 1.92 1.32 1.36 1.26 0.17 0.18 0.16 0.63 0.67 0.64
T2_3 0.80 0.85 0.79 1.41 1.42 1.42 1.92 1.91 1.85 1.32 1.35 1.25 0.17 0.16 0.17 0.63 0.62 0.62
T3_1 0.51 0.49 0.52 0.95 0.92 0.97 0.30 0.31 0.32 1.20 1.16 1.24 0.25 0.23 0.24 0.10 0.11 0.10
T3_2 0.51 0.52 0.51 0.95 0.95 0.94 0.30 0.30 0.31 1.20 1.17 1.20 0.25 0.24 0.25 0.10 0.10 0.10
T3_3 0.51 0.51 0.49 0.95 0.93 0.93 0.30 0.29 0.29 1.20 1.19 1.22 0.25 0.24 0.24 0.10 0.11 0.10
Mean recovery (RexpÞ 101.7 99.4 100.7 98.1 100.9 100.1 101.2 96.8 99.2 97.8 101.5 98.4

Standard deviation of recovery (SR) 3.7 2.8 3.0 3.3 3.3 4.5 4.2 4.3 5.1 3.1 5.8 2.1
texp

b 1.42 0.70 0.70 1.70 0.79 0.08 0.82 2.26 0.45 2.14 0.78 2.26

a Concentration are given in μg mL−1. Recovery (between parentheses) is given in percentage.
b Experimental texp value, texp ¼ j100−Rexp j

ffiffiffi
N

p
SR
, where N = 9 is the number of validation samples. (Critical value t(0.025,8) = 2.306).
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Table 3
Effect of constraints on rotational ambiguity for all components.

ƒmax–ƒmin Constraints

1 1 and 2 1, 2 and 3 1, 2, 3 and 4

Atenolol 6.20 0.703 −0.0542 0.457
Enalapril 6.02 0.159 0.0164 −0.092
Amlodipine 1.35 0.267 0.0194 0.145
Gliclazide 6.40 0.365 −0.0348 0.049
Glibenclamide 12.8 0.508 0.0078 −0.013
Glimepiride 10.2 0.493 0.0176 0.066

Constraints: 1 normalization; 2 non–negativity: 3 unimodality; 4 trilineality.
ƒmax–ƒmin: corresponds to the difference between ƒmax and ƒmin values (see Ref. [21]).

Fig. 1. Chromatographic runs corresponding to a standard solution prepared in water
(A) and basal serum (B), registered at 230 nm. The total chromatographic data
registered for each sample were partitioned in: Region 1 (R1) corresponding to
antihypertensive drugs (from 0.38 to 1.15 min and 200 to 400 nm); and Region 2 (R2)
corresponding to antidiabetic drugs (from 1.22 to 2.18 min and 202 to 360 nm).
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4. Results and discussion

4.1. Multiway analysis

In our previous work [5], we could only quantitate hyperglycemic
drugs, while antihypertensive drugs appeared overlappingmatrix com-
ponents. This problem has been solved in the present report by the use
of three-way modeling.

Before MCR-ALS and U-PLS/RBL processing, the chromatographic
data were split into two regions, R1 and R2 (see above). Fig. 1 shows
the chromatographic runs corresponding to a standard solution pre-
pared in water (Fig. 1A) and basal serum (Fig. 1B), both registered at
230 nm.

4.2. MCR-ALS and U-PLS/RBL implementation

In order to quantitate the six analyzed drugs in the 11 validation
samples (Table 1), the number of contributions to each D data matrix
was determined by singular value decomposition (SVD). Taking into ac-
count that MCR-ALS needs information as real as possible to start the
resolution, the ST–type initial estimated were built combining the
pure analyte chromatograms with those obtained for the interferences
by means of the selection of purest time profiles based on estimation
of purest variables [17]. Given D and ST, appropriate constraints
(i.e. non–negativity and unimodality)were implemented to drive the it-
erative optimization to the right solution. After MCR-ALS ofD according
to Eq. (1), the concentration information contained in C was used to
construct the univariate graph by plotting the analyte concentration
scores against the nominal analyte concentrations. The analyte concen-
tration score can be defined as the area under the profile for the sample:

a i;nð Þ ¼ ∑
iJ

j¼1þ i−1ð Þ J
C j;nð Þ ð5Þ

in which a(i,n) is the score for the component n in the sample i.
To assess the quality of themodeling, the degree of rotational ambi-

guity was evaluated in order to know if the solutions provided by the
decomposition are practically unique. For this purpose, the software
presented by Jaumot and Tauler was implemented [21]. Table 3
shows the parameters fmin and fmax and its corresponding difference ob-
tainedwhen the available constraintswere imposed.Modelingwas per-
formed implementing the constraints normalization, non-negativity,
unimodality and trilinearity (the latter one with bad results). It showed
that profiles do not change during the optimization. This conclusion is
reached by analyzing the relationships between fmax and fmin which
should be nearest to zero (Table 3). As can be appreciated, the data do
not follow the trilinearity property owing to when this constraint is ap-
plied worst results are obtained (fifth column of Table 3).

UPL-S/RBL was applied first selecting the number of latent variables
by the well-known leave-one sample-out cross-validation procedure
[18]. Thus, the optimumnumber of factors was estimated by calculating
the ratios:

F Að Þ ¼ PRESS AbA�ð Þ=PRESS Að Þ ð6Þ

where PRESS=∑(yi , act−yi ,pred)2, A is a trial number of factors and A⁎
corresponds to theminimumPRESS, and selecting the number of factors
leading to a 75%-less probability that F N 1.

4.3. Quantitative results

In order to compare the performance of UPLS/RBL and MCR-ALS in
terms of predictive ability when modeling second-order data, predic-
tions were obtained on the eleven validation samples (Table 1). Predic-
tion results corresponding to the application ofMCR-ALS andU-PLS/RBL
to the validation set showed relative error of prediction (REP%) values
below 10% in all cases (Table 1). In order to appraisewhether the recov-
erieswere not statistically different than 100% a hypothesis test was ap-
plied. The experimental texp valueswere estimated following the Eq. (7)

texp ¼ 100−Rexp
�� ��

ffiffiffiffi
N

p

SR
ð7Þ

where Rexp is the average experimental recovery and SR the standard
deviation of the recoveries. The recoveries are considering statistically
different than 100% when texp value exceed the critical t(α,υ) value at



Table 4
Figures of merit (LOD and LOQ) attained for U-PLS/RBL and MCR-ALS.

LOD (ng mL−1) LOQ (ng mL−1)

U-PLS/RBL MCR-ALS U-PLS/RBL MCR-ALS

Atenolol 13.9 18.8 40.7 57.1
Enalapril 5.7 6.9 17.2 20.9
Amlodipine 16.8 28.3 50.4 85.6
Gliclazide 12.2 21.0 36.4 63.6
Glibenclamide 6.3 18.6 26.7 56.5
Glimepiride 9.4 18.1 28.2 54.9
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level α,υ = n−1 of freedom and n samples [22]. Considering 95% con-
fidence level, the experimental texp value for all analytes in validation
samples are lower than critical value t(0.025,10) = 2.228, indicating that
the recoveries are not statistically different than 100%.

LOD and LOQ were calculated according to Bauza [23]. The figures
attained for U-PLS/RBL and MCR-ALS are displayed in Table 4. Interest-
ingly, the LOQ values calculated are in the order of ng mL−1, below
50 ng mL−1 for all the studied drugs, which allow quantitation in
human serum in patients under treatment. In addition, these LODs
and LOQs are lower than those reported by Georgita and Zhou [24,25],
and even in the method previously developed by our group [5]. As can
be seen U-PLS/RBL has better detection and quantification limits for all
the studied drugs, however results obtained by MCR-ALS enable its
usage as well, owing that differences cannot be considered as signifi-
cant. On the other hand, the attained LODs and LOQs are lower than
those obtained in previously published works by other authors, and
Fig. 2. Profiles retrieved by theMCR-ALSmodeling of sample T1-1. (A) Three analytes and three
Region 2. (B and D) Spectra of Regions 1 and 2, respectively. Region 1 (antihypertensive drugs
components grey lines. Region 2 (antidiabetic drugs) gliclazide blue solid line; glibenclamide g
also compared with those obtained in our previous report [5]. But, it
can be observed that in the first case not only a different extraction pro-
cedure was optimized and employed, but a different technique was
implemented.

For recovery studies (accuracy), aliquots (250 μL) of serum sample
were enriched with the six drugs in order to reach the concentration
levels indicated in Table 2 and processed (see Section 3.5). Final solu-
tions were injected into HPLC. Each sample was prepared by triplicate
and evaluated by both strategies. The experimental texp value for all
six drugs are lower than critical value t(0.025,8) = 2.306, asserting the ef-
ficiency and the accuracy of the proposed method.

Fig. 2 shows the profiles retrieved by theMCR-ALSmodeling of sam-
ple T1-1 (recovery study). As can be appreciated in this figure, severe
overlapping occurs, especially in the time dimensions. Six components
are present in the region R1 (Fig. 2A) and five components are present
in the region R2 (Fig. 2C). MCR-ALS can differentiate between the cali-
bration analytes and compounds of the matrix. Notably, the presence
of three interferents is shown in the first region (Fig. 2A). On the other
hand, only two interferents appear in the second region (Fig. 2C).
Fig. 2B and D show the corresponding spectra of Regions 1 and 2, re-
spectively. The extracted profiles match very well those corresponding
to the pure compounds (not shown), indicating that the second-order
advantage can be exploited.

In order to assess themethod robustness, different chromatographic
parameters were varied within a realistic range and the influence
of these variables on recovery was studied. A twelve experiment
Plackett–Burman design was built considering small variations in: mo-
bile phase composition (% acetonitrile), chromatographic flow, and col-
umn temperature. Results (not shown) allowed us to conclude that the
interferents are present in Region 1. (C) Three analytes and two interferents are present in
) atenolol red dashed line; enalapril blue solid line; amlodipine green dotted line; serum
reen dotted line; glimepiride red dashed line; serum components grey line.
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analytes can be correctly quantified even in presence of small variations
of the main factors affecting the chromatographic procedure.

Table 5 shows the results obtained when analyzing thirty six sam-
ples from patients in treatment with the previous method developed
by our group for the three antidiabetic drugs (“reference method”) [5]
and the method proposed herein. The elliptic joint confidence region
(EJCR) test to evaluate the slopes and intercepts of the plots correspond-
ing to predictions by the “reference method” vs. the studied one [26],
was applied in order to carry out a comparison for each analyte
(Fig. 3). In this case, it should be remarked that the analytes amlodipine,
atenolol and enalapril could not be accurately quantified by use of the
“reference method” owing to overlap of its peak with interference of
the basal plasma, thus only antidiabetic drug predictions were com-
pared through the EJCR method. As can be appreciated in Fig. 3, the el-
liptical domains contain the theoretically predicted value of the slope
(1) and intercept (0). Fig. 3A shows the analysis ofMCR-ALS predictions,
while Fig. 3B corresponds to the analysis of U-PLS/RBL predictions. As
can be seen in Fig. 3, better results are obtained using U-PLS/RBL than
MCR-ALS for gliclazide. However, for the other analytes, the difference
is not as notable. Therefore either algorithm can be used in the quanti-
fication of these drugs.

These observations indicate that both methods provide comparable
results for glibenclamide, glimepiride and gliclazide. Interestingly, the
new method provides better results than the total separation HPLC
Table 5
Analysis of real samples.

Sample Atenolol Enalapril Amlodipine Gliclazid

Anal. Aa Anal. Bb Anal. Aa Anal. Bb Anal. Aa Anal. Bb Refc

M1 0.251 0.246 0.473
M2
M3 0.192 0.189
M4 0.362 0.375
M5 0.065 0.068
M6 0.155 0.158
M7 0.383
M8
M9 0.272 0.267
M10 0.736
M11 0.718 0.721 ND
M12 0.315 0.308 ND
M13
M14 0.419 0.423
M15 0.614
M16
M17 0.130 0.133
M18
M19 0.215 0.210 1.424
M20 0.178 0.173
M21 0.205 0.195
M22 0.375 0.388
M23 0.261
M24 0.102 0.108 0.327
M25 0.216 0.205
M26 0.359
M27
M28 0.302 0.298
M29 0.199 0.197
M30 0.464
M31 0.463 0.458 1.080
M32 0.075 0.073
M33
M34
M35 0.118 0.115
M36 0.122 0.122
Slope
Intercept

ND: not quantifiable.
a Concentration are given in μg mL−1. Anal. A: U-PLS/RBL.
b Anal. B: MCR-ALS.
c Reference method.
method, given lower quantification limits; this allows the quantification
on samples 13, 25, 33 and 34. Furthermore, with this method we can
quantify the presence of enalapril, amlodipine and atenolol. Run time
was reduced by 50%. And last but not least, the reduction of solvents
used reduces waste treatment and disposal costs, in accordance with
green chemistry principles [27].

5. Conclusions

A liquid chromatographic method, based onmodeling second-order
data, was presented for the simultaneous determination of three antidi-
abetic drugs in human serum. This determination has been done in the
presence of antihypertensive drugs by using second-order data generat-
ed byHPLC-DADwith both themultivariate curve resolution alternating
least squares and the unfolded andmultiway partial least-squares algo-
rithms. The method was validated for all six analytes. Performance was
excellent in terms of trueness and precision. In addition, a robustness
study showed that the analytes can be accurately quantified even in
presence of small variations of themain factors affecting the chromato-
graphic procedure. The proposed strategy considerably reduces the
complexity of the resolution and in consequence the processing time.
By use of this method, amounts of solvents used in the separation step
are reduced, which is highly recommended by the principles of green
analytical chemistry.
e Glibenclamide Glimepiride

Anal. Aa Anal. Bb Refc Anal. Aa Anal. Bb Refc Anal. Aa Anal. Bb

0.459 0.469
0.151 0.150 0.153
0.290 0.265 0.279

0.229 0.213 0.218
0.282 0.286 0.290
0.245 0.245 0.242

0.386 0.380
0.255 0.253 0.257
0.280 0.285 0.284

0.737 0.740
0.116 0.119
0.110 0.109

ND 0.117 0.106
0.271 0.278 0.276

0.618 0.595
0.211 0.223 0.213

0.261 0.254 0.277
0.185 0.189 0.181

1.427 1.417
0.522 0.537 0.562
0.238 0.247 0.222

0.364 0.354 0.376
0.265 0.255
0.319 0.327

ND 0.110 0.114
0.336 0.348

0.405 0.446 0.402
0.151 0.156 0.149

0.219 0.223 0.217
0.460 0.460
1.098 0.902

0.134 0.124 0.134
ND 0.106 0.117
ND 0.131 0.138

0.228 0.215 0.219
0.304 0.304 0.301

1.016 0.934 1.066 1.075 1.008 1.110
−0.011 0.017 −0.011 −0.018 −0.006 −0.027



Fig. 3. Elliptic joint confidence region (EJCR) for the predictions of glibenclamide,
glimepiride and gliclazide. (A) Ellipses obtained by comparing results processed by
MCR-ALS and reference method. (B) Analysis of U-PLS/RBL and reference method
predictions. Gliclazide: green line. Glibenclamide: blue line Glimepiride: red line.
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