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Abstract and introduction: The causes of the inflation and how to use monetary and economic policies 

to stabilize this variable, has been widely analyzed by the Theory and Applied Economics. That theory 

results sometimes incomplete when it's translated into economic policies, for countries with high or 

medium persistent levels of inflation in the long run. Inflation in Latin American countries seems to be 

caused by different and/or additional facts than in more advanced countries. 

The effects over social development and welfare of high rates of inflation are sufficiently known, but 

generally the main concern is the lost of purchasing power in the low income workers, the reduce of 

investment by the companies and the general deterioration of the Economy. 

Because inflation is a phenomena that shows particularities from time to time, and from country to 

country, and still remains as a big unsolved problem for some Latin American countries, is needed to 

revisit theories, finding the basement of its mechanisms and looking for new solutions. Many 

hypothesis, points of view (monetary, income distribution and demand inflation), short and long run 

inflation, nominal rigidities and several models have been studied. Here we propose a new model for 

testing traditional like a modified Phillips curve, as an starting point of empirical research.  

This is a project and a proposal of research, so it doesn't have results. In the first part, we explain a 

mathematical model that was taken from Engineering for input-output systems, which has the goal of 

stabilizing the output. In the second part, we expose a simple three-equations monetary model, which 

will be our starting point. In the third part, we explain how the research is thought to be continued. 

 

 

 

 

 

 

1. THE MATHEMATICAL MODEL 

 

SLIDING MODES 

 This topic have been widely analyzed in the literature, while Emilyanov and Utkin (1978, 1992) 

are the most classical references. In another hand, Sira Ramirez (1994) demonstrated the close 

relationship between Sliding Regimes and pulse-width modulation (Slotine and Weiping, 1991). 

 In this work we will use the results obtained to date and we will study its principal advantage: its 

immunity to input perturbations and variations in the parameters of the system. 
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BASIC DEFINITIONS 

 The Sliding Modes(SM) are part of a more general type of systems, the systems of variable 

structure . SM are basically a control law, which changes very quickly for conducting the path of the 

states of the system towards an arbitrary surface ),( txS  specifically chosen by the researcher, 

maintaining that path over S  or at least during a time interval. 

 The Sliding Surface will be an attractor, just only if certain conditions are fulfilled. The Control in 

Sliding Mode will be robust because the dynamic of the system is generated by this surface and because 

it will not depend on any parameter of the system. 

 Nevertheless, to maintain the states path over the Sliding Surface, it will be need to change the 

control law every time the path cuts the surface. In an ideal SM, that control action will be generated 

with an infinite high frequency. Because of hysteresis, lags and inertia in real systems, this frequency is 

finite and also can excite non modeled dynamics of the system. This phenomena is known as chattering. 

 

EXISTENCE OF THE SLIDING REGIME 

 We take an autonomous system, expressed as: 

[1]   n , 2, 1,    ),,,,( 21  


ixxxtfx nii  

 

where the functions ),,,,( 21 ni xxxtf   are defined in the domain of the space of states and could be 

considered as discontinues functions. 

 Then, we can suppose that the functions ),,,,( 21 ni xxxtf   are in general, continuous by 

sections and that they present discontinuity in a surface S defined as: 

[2]    0),,,( 21 nxxxS   

 If we identify the space of states as H, then the surface will divide it into 2 regions: 

0for      and   0for    SHSH ; then in a neighborhood of S, functions 

iii fff   and    be   will , 

defined in  HH   and  respectively, while  

NN ff  and  are the projections over the normal N to the 

surface. (Figure 1) 
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Figure 1:  State Space (dimension 3) and Sliding Surface (dimension 2) 
 

Taking derivative with respect time: 
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If Filippov conditions are fulfilled, the surface will be an attractor; in that case: 
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Those conditions assure that the surface will be an attractor and over it, the sliding regime or mode will 

be produced. 

If the system in [1] is expressed like a controlled system x=f(t,x,u), where signal u is discontinuous and 

has the form: 

[5]    













 uu

u

u
u      

0   S(x)for           x)(t, 

  0 S(x)for             x)(t,
 

Then we can extend the previous analysis for an autonomous system, to a controlled one, so therefore: 

a sliding regime will happen over 0)( xS , if the projections of the vectors 

),,(  and  ),,(   uxtfuxtff  over the gradient of the surface S, are opposed signs and are 

directed towards the surface. Analytically:  
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GENERAL ASPECTS OF A CONTROLLED SYSTEM IN A SLIDING REGIME 

 

 We consider a system of one entry, expressed in its Controllable Canonic Form (CCF) by its 

dynamic equation: 

[7]   ubfx 


)()( xx  

where the scalar x  is the output in which we are interested, x  is the vector of states  and scalar u is the 

control signal. About the mostly linear and not exactly known function )(xf , it can be assumed that it’s 

limited by a known function of x . Also, the control gain )(xb  is not exactly known, but its sign is known 

and it´s limited.  

 The control problem is about state x , to achieve or follow a desired state, which could vary 

across time ( T],,,[ 1


 n
dddd xxx x ), even in front of inaccuracies of the model produced by )(xf and 

)(xb . For the achievement of the previous, using a finite control signal u , the initial state desired 

)0(dx  must be: 

[8]     )0()0( xx d  

 If dxxx ~  is the error in the variable x , and  T]~,,~,~[~ )1( 


 n
d xxx xxx is the error 

vector, then it can be defined a time-variant surface )(tS  in the space of states )(n   by the scalar 

equation 0),( ts x where:  

[9] 0       with ~),(

1













cxc
dt

d
ts

n

x  

 For example, if n=3  then xcxcxs 


22 .       

 Then, regarding the initial conditions [8], the problem of achieving  dxx   is equivalent to get 

the error vector x~    to stay over the surface S(t) for every t>0. The problem of tracing the n-dimensional 

vector  dx  can be replaced by a first order stabilization problem of s.  In fact, because the expression of 

s embedded in [9] contains the element )1(~ nx , just deriving s one time, it appears the entrance signal 

u .  
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 The simplified first order problem (to bring scalar s to cero), can be solved picking control law u  

from [7] such that the condition for the existence of a sliding mode exists. 

 

ROBUSTNESS OF THE SLIDING MODE SYSTEMS 

 We consider a system expressed in its Controllable Canonic Form:  

[10]   





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



n

i

iin
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xx
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1

)(x

1-n,1,2,i             







 

where u  is the control signal; (t)  is an entrance or non structural perturbation, in the sense that is not 

originated by the parameters defined in the system; and i  are system parameters, that can be assumed 

constant or variant in time. 

 We can assume that i  and  (t)   are unknown, and that control signal u  is of the type defined 

in [5].  

  If we define the Sliding Surface S(x) like: 

[11]   



n

i

ii xcxS
1

)( 1       ni cconstc  

where ic  is a constant and 1nc , and taking into account that we can assign an arbitrary dynamic to 

S(x), then the conditions for the existence of a Sliding Mode  in S(x)=0 can be fullfilled, which were 

pointed out in [6]. 

 Then, if [6] is fulfilled and equation [11] is solved for  S(x)=0  and for the variable nx , the 

following is obtained: 

[12]   i

n
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1

1
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 The latter result performs the set of equations from which the SM is going to depend. It can be 

observed that nor the perturbation nor the unknown parameters appear; the only influential are the 

parameters ci  of the Sliding Surface, which are constants of the design. 
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Example 1: Let's consider a system of two state variables. The perturbation is modeled as a function  

)sin( wtaFp  . The model in state variables is: 
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and then a Sliding Surface can be defined in agree with [11]: 

[14] 0)()()( 112  txctxtS where  c1 is a design constant. 

 As we said before, this sliding surface must behave as an "attractor" and will be a line in the 

phase plane by which the states of the system will "slide" towards origin. 

 The abovementioned will be fulfilled if the Liapunov function: 2

2

1
SL   is defined, then 

0


SSL  and could be easily satisfied if the sign function is used: 

[15]  )(SsignS 


 , where is a positive design constant, and sign  the function: 
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 Combining [14] and [15]: 

[17]   )(112 Ssignxcx 


  

 And relating [14] and [17] we get the final expression of the control: 

[18]       )(
1

21211

3

SsignFpxcKxK
Kev

u    

 In the latter,  and  are parameters which are part of the controller's design; the best 

performance of the system will depend on an accurate choice of them. The simulation can be watched 

in figures 2 and 3, where the values used in the controller where:  and =0.05. 

 As expected, the system responded well to the control in sliding mode; however, is clear that 

control signal is inapplicable in practice, due to the presence of "chattering".   
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Fig. 2: a) Output of the system with and without control, at different frequencies  b) Control signal 

applied. 

 The signal in we are interested can be observed with and without control in the figure 2 a)  and 

so the control signal applied, in b). When the control is applied, the output is zero, while when no 

control is applied, the output begin to be affected by the perturbation. 

 The presence of chattering is undesirable in the practice, because it involves very high frequency 

oscillations that can excite non modeled dynamics, low precision in the control. Then, is required to 

smooth the discontinuous control signal to achieve an engagement between the signal tolerated by the 

real physical elements and the required precision. 

 In a Macroeconomic model, where sample time could be hourly, daily and highly frequencies 

(not milliseconds, like in Engineering), this can be solved more easily. Chattering can be eliminated or 

reduced a lot, with a boundary layer. 

 

 

 

2. THE MACROECONOMIC MODEL 

 

 The Macroeconomic model is a modified Phillips curve, expressed in differential equations and 

trying to find an expression for the dynamic behaviour of the rate of inflation. 

 The Phillips curve speaks about the trade-off between inflation and unemployment. Such a 

relationship can look as too much simple, but it will be a good point for beginning the modelling. In the 

future, this simple 3-equations-model can be extended.  
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 Let's think about just only 2 markets in the Economy, labour market and money market. If 

inflation rate is a basically a wages function, we can write: 

[19] p U T       ;  α y β >0 

where: p is the inflation rate (if P is the level price, then       , U is the unemployment rate and T is 

the work productivity (which can vary with t) and wages are a lineal function of unemployment, like 

w= U  in [19]. 

 If we add the fact that today, economic agents have an expected level of inflation for next 

period, then: 

[20] p U T h          ;         and   is the level of inflation expected by the agents. 

 Inflation expectations could be modeled as adaptative expectations, like: 

[21] ( )
d

j p
dt


  ; where t is time and       

 If we add a third equation, then [20] [21] and [22] will be our three equations system: 

[22] ( )
dU

k m p
dt

   ; with k> 0 and where m is the rate of growth of money M (     . 

 The right side of [22] is the rate of growth of real money. Therefore, this equation specifies a 

negative relationship between unemployment variation and real money growth. It also shows a 

feedback from inflation variable to unemployment variable. 

 Then, our model of three endogenous variables           is the set of equations [20], [21]and 

[22]. 

 

Time path of inflation rate 

 Now we will resume our three equations model in one, by substituting [20]in[21], expressing the 

whole system for explaining behaviour of the rate of the expected level of inflation: 

[23] 
  

 
                   

 We take differential of [23] respect to t: 
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[24] 
2

2
(1 )

d dU d
j j h

dt dtdt

 
     

 Substituting [22]in[24]: 

[25] 
2

2
(1 )

d d
j km j kp j h

dtdt

 
      

 We clear p from [21] and replace in [25], obtaining: 

[26] 

21

2

2
[ (1 )] ( )

a ba

d d
k j h j k j km

dtdt

 
         

 In this way, the particular integral of [26] is: 

[27] 
2

p

b
m

a
   : the intertemporal equilibrium value of the rate of inflation, depending just only in 

the rate of growth of nominal money. 

 The complementary function will be: 

[28] 
2

1 2 1 1 2

1
. ( 4 )

2
r r a a a     

 So, we were interested in obtaining and expression for π and its dynamic in time. A priori, we 

just can say that because of [26], a1 and a2 are positive constants, but we can't know if they are equal or 

different. Then [28] can result in different real roots, equal or complex. For different and equal real 

roots, we can deduct that both roots will be negative, so it will exist a dynamic stable equilibrium.  

 

 

 

3. FURTHER WORK 

 

 This simple Phillips curve is just the starting point to test the usefulness of the mathematical 

model. After that, the research will follow: 

 Elaborating a bigger system of equations. 

 Testing other theories besides Phillips curve, including short-run behaviour. 
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 Using Econometrics to feed the math model, by the estimation of parameters. It will be used 

multivariate ARIMA models. 

 Another Econometric techniques could be used, like Bayesian estimators. 

 Inflation Theories are going to be tested first in developed countries like United States, France 

and Germany. The former will be done to have a comparison point with Argentina, Brazil, and 

Venezuela. 

 The main goal will be testing the existence of more complex combination of causes in Latin 

American countries of actual persistent inflation, than in high-income countries.  

 

 

 

REFERENCES 

Fisher, M. and Seater, J. (1993): "Long-Run Neutrality and Superneutrality in an ARIMA 

Framework". The American Economic Review. Vol. 83, nº 3. 

Mc. Callum (1984): "On Low-Frequency Estimates of Long-Run Relationships in 

Macroeconomics." Journal of Monetary Economics 14 (1). 

Mc. Callum, B. and Nelson, E. (2010): "Money and Inflation: Some Critical Issues." Finance and 

Economic Discussion Series, Board of Governors of the Federal Reserve System. 

Sira Ramírez, H.; Llanes Santiago, O. (1994): "Dynamical discontinuous feedback strategies in 

the regulation of nonlinear chemical processes". IEEE Transactions on Control Systems 

Technology – Vol 2 Nº 1 – March 1994. pp 11-21. 

Slotine, J. J.; Weipig, L. (1991): Applied nonlinear control". Prentice Hall International, Inc. – New 

Jersey – 1991. 

Urbisaia, H.; Brufman, J.; Martínez, C.; Rodríguez, E. (2007). “La modelización VAR aplicada a un 

problema de economía monetaria”.  XXII Jornadas Nacionales de Docentes de Matemática de 

Facultades de C. Economicas y afines. Setiembre 2007, Mendoza. 

Utkin, V. I. (1978): Sliding modes and their application in variable structure systems.MIR 

Publisher, Moscow. 

Utkin, V. I. (1992): Sliding Modes in control and optimization. Springer Verlag – New York. 



 
12 

 

Walsh, C. (2010): Monetary Theory and Policy. The MIT Press, Cambridge, Massachusets. 

 

 


