

TRABAJO FINAL ENERGÍAS RENOVABLES

2018

"ABASTECIMIENTO DE ENERGÍA ELÉCTRICA A UN OBJETO ARQUITECTÓNICO AISLADO"

GRUPO N°: 25 INTEGRANTES

BARRIONUEVO FEDERICO
GERBER FRANCISCO
RIQUEZA FERNANDA

RESÚMEN

• En el marco del trabajo final de la Catedra de Energías Renovables de la Facultad de Arquitectura de la UNNE, el presente trabajo pretende dar respuestas y/o aprender a emplear los conocimientos adquiridos en el cursado. Dentro de este contexto, el equipo trabajó en el desarrollo de un proyecto para el abastecimiento de energía eléctrica de un Centro de Interpretación en la provincia de Misiones, ubicado dentro de un área natural protegida y aislado de toda posibilidad de abastecerse con energía eléctrica convencional.

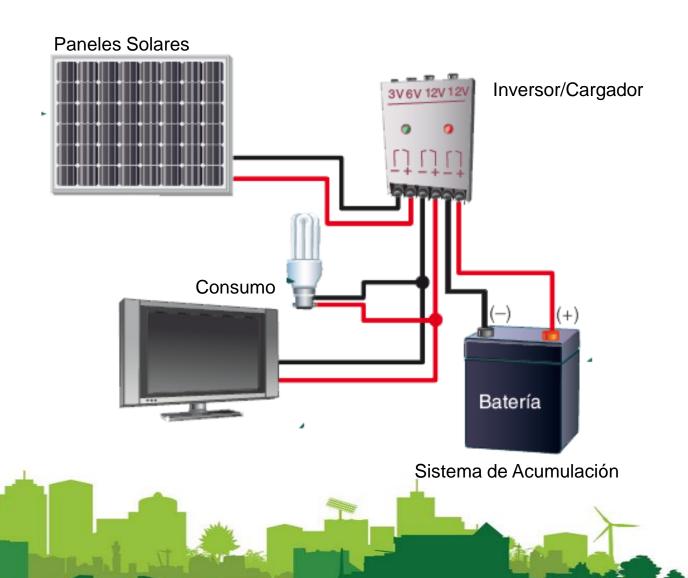
PLANTEAMIENTO DEL PROBLEMA

- En el contexto actual mundial de preocupación energética, las energías renovables aparecen como alternativas viables cuando se trata de resolver problemas de contaminación ambiental y de acceso a la energía.
- La red escasamente puede abastecer a los centros urbanos más pequeños, incursionando apenas en las zonas rurales más pudientes y próximas a los centros urbanos.
- Por lo tanto, las zonas no servidas, en las que no resulta pertinente llegar con extensión de red atendiendo a razones de carácter económico, técnico, de impacto ambiental, el abastecimiento utilizando sistemas no convencionales y de generación individual y local de electricidad, toma cada vez más importancia, especialmente si se usa como fuente de generación los recursos renovables con los que cuentan las regiones como la energía solar, la eólica y la biomasa.

- Estos sistemas presentan, como ventaja comparativa respecto del suministro de energía eléctrica por red, menores costos de operación y mantenimiento (dado que no tienen que pagar cargos); si bien presenta las desventajas de proveer cantidades muy acotadas de energía y de la relativa dependencia de las condiciones climáticas.
- Esta situación dio origen al intento de abordaje de la problemática energética de zonas aisladas, mediante la implementación de energías renovables para el abastecimiento de energía eléctrica a un objeto arquitectónico aislado, ubicado dentro de un área natural protegida, ya que ésta, no tiene acceso a la red eléctrica por sus condiciones geográficas.

OBJETIVOS

- Abastecer de energía eléctrica a un proyecto arquitectónico aislado mediante el uso de energías renovables.
- Disminuir el impacto ambiental por el uso de energías renovables.
- Lograr un diseño técnico eficiente, materializado a través de componentes disponibles en el mercado nacional.
- Articular distintas asignaturas de la carrera en un proyecto interdisciplinario como ser Instalaciones II, Construcciones II, Energías Renovables.
- Desarrollar los conocimientos adquiridos en la carrera y la asignatura Energías Renovables.

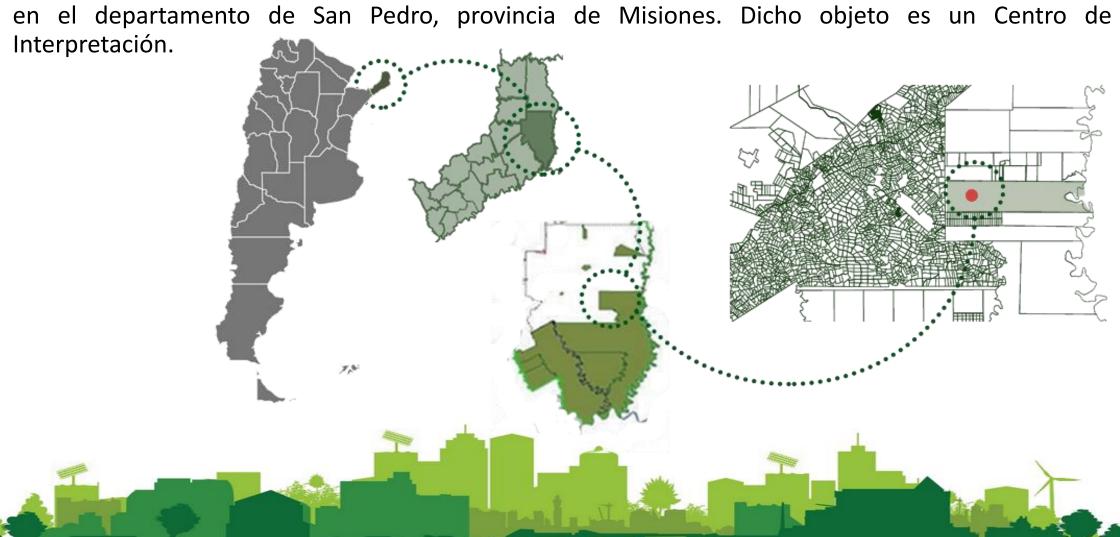


MEMORIA DESCRIPTIVA SOLUCIÓN

SISTEMA FOTOVOLTAICO AISLADO

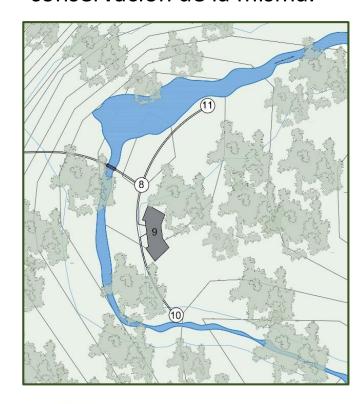
Ante la problemática planteada, la solución por la que se optó para el abastecimiento eléctrico del objeto fue el sistema fotovoltaico aislado.

• SISTEMA DE COLECTOR SOLAR

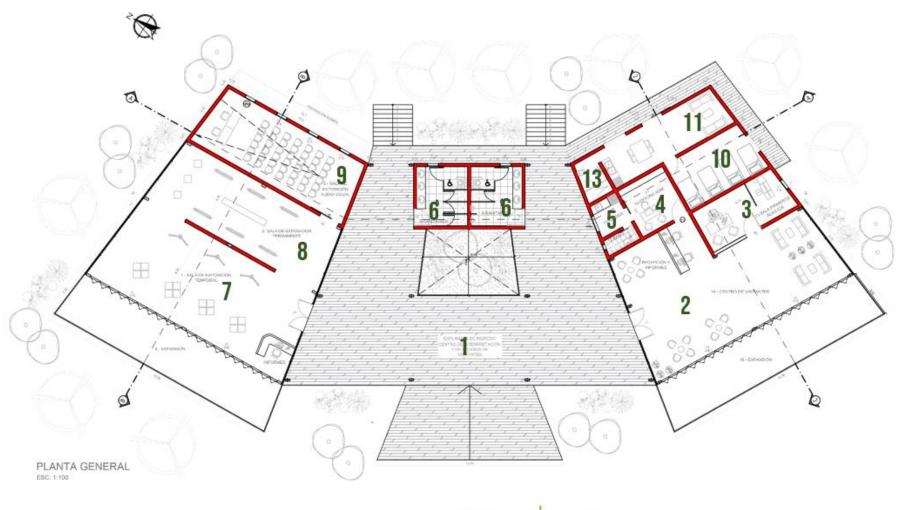

En la zona de la implantación al no disponerse de red eléctrica como se mencionó anteriormente, se optó por abastecer de manera sustentable el abastecimiento de agua caliente sanitaria un colector solar con resistencia eléctrica de respaldo

CASO DE ESTUDIO UBICACIÓN

El objeto arquitectónico a intervenir se encuentra ubicado dentro de la "Reserva de Biosfera Yaboti",


• IMAGEN AEREA DEL TERRENO

BREVE MEMORIA DESCRIPTIVA DEL PROYECTO


 El proyecto es un centro de interpretación que tiene su origen en la integración al paisaje, presentando espacios que permitan distintas lecturas de la selva, que el turista se apropie y conozca las cualidades de cada rincón dependiendo de la estación de año, dirección del viento y la hora del día; como así también conozca y contemple la naturaleza, y se involucre en la conservación de la misma.

ASPECTO FUNCIONAL ESPACIAL

Centro de Interpretación

- 1. Explanada de acceso
- 2. Centro de visitantes
- 3. Sala de primeros auxilios
- 4. Oficina de Administración
- 5. Cocina y baño
- Sanitarios
- 7. Sala de exposición temporal
- 8. Sala de exposición permanente
- 9. Sala de exposición audiovisual

Vivienda Guardaparques

- 10. Dormitorio
- 11. Estar Cocina Comedor
- 12. Baño

ASPECTO TECNOLOGICO

- La característica principal de la materialidad del proyecto fue el uso de la madera como material primordial tanto en exteriores como en los ambientes interiores, y la incorporación de amplios ventanales que permiten disfrutar al máximo al paisaje.
- Para lograr una total armonía con el entorno natural, se decidió realizar este proyecto mediante el sistema de construcción más utilizado en el planeta, el "Balom Frame" o "Platform Frame". Este es una buena alternativa en aquellas zonas donde la madera es el principal recurso natural para construir.

Ventajas:

- Menor tiempo de obra y uso de recursos
- Ahorro de energía y mayor calidad de vida

SOLUCIÓN PROPUESTA

DIMENSIONAMIENTO DEL PANEL FOTOVOLTAICO.

- ESTIMACION DE LA DEMANDA: SE CALCULO LA ENERGÍA NECESARIA PARA EL FUNCIONAMIENTO DEL OBJETO ARQ.
- **DIMENSIONAMIENTO**: CÁLCULO DE LA CANTIDAD DE PANELES.
- DIMENSIONAMIENTO DEL SISTEMA DE ACUMULACIÓN: CANTIDAD DE BATERIAS NECESARIAS.

ARTEFACTOS	CANTIDAD	POTENCIA (W)	Hs/DIA	ENERGÍA DIA (WH)			
EXPANSIÓN EXPLANAD	A DE ACCESO						
BOCA LUZ LED	15	12	5	900			
SALA DE EXPOSICIÓN							
BOCA LUZ LED	8	12	5	480			
TOMA CORRIENTE	2	220	3	1320			
AUDITORIO							
BOCA LUZ LED	4	12	5	240			
TOMA CORRIENTE	2	220	2	880			
SANITARIO EXT.							
BOCA LUZ LED	2	12	5	120			
TOMA CORRIENTE	2	220	1	440			
CENTRO DE VISITANTES							
BOCA LUZ LED	6	12	5	360			
TOMA CORRIENTE	1	220	3	660			
SALA DE PRIMEROS AUX	LIOS						
BOCA LUZ LED	2	12	5	120			
TOMA CORRIENTE	2	220	2	880			
OFICINA DE ADMINISTRA	CIÓN COCINA	BAÑO					
BOCA LUZ LED	3	12	3	108			
TOMA CORRIENTE	1	220	2	440			
DORMITORIO							
BOCA LUZ LED	2	12	2	48			
TOMA CORRIENTE	1	220	2	440			
BAÑO COCINA							
BOCA LUZ LED	2	12	3	72			
TOMA CORRIENTE	2	220	2	880			
HELADERA	1	225	15	3375			
SALA DE ESTAR							
BOCA LUZ LED	4	12	5	96			
TOMA CORRIENTE	2 SUB TO	220	2	660			
	12519						
INV	625,95						
TOTA	13144,95						

Energía solar y meteorología de superficie. Eldorado. Misiones

Variable	yo	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII
Insolación, kWh/m²/día	6.13	5.56	4.98	3.96	3.29	2.85	3.15	3.82	4.37	5.12	6.00	6.21

POTENCIA DEL PANI	EL 280 WP	ENERGIA WH/DIA
ANUAL = HSE pa	= 55,44 /12 = 4,62 x 280W	1293,6WH/DIA
VERANO = HSE v	$= 34/6 = 5,56 \times 280W$	1556,8 WH/DIA
INVIERNO = HSE i	= 21,44/6 = 3,57 x 280W	996,6 WH/DIA

Según cálculo se requieren un total de:

10 paneles fotovoltaicos de 280W14 baterías para 1 día

Panel seleccionado:

PLACA FOTOVOLTAICA RENOGEN SOLAR POWER 280W Batería adoptada:

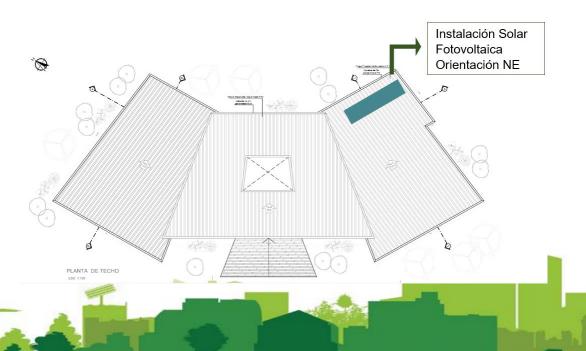
RENOGEN SOLAR POWER.

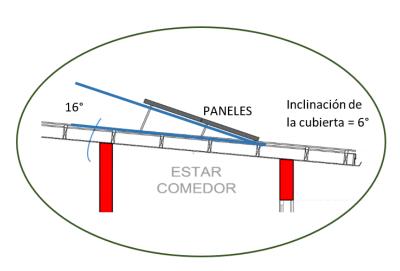
Inversor:

INVERSOR CARGADOR SOLAR 3Kva 2400w 24v PWM 50^a.

Estructura Soporte:

Soporte para Panel Solar para Techo Tipo Reticulado FIASA®





UBICACIÓN DE LA INSTALACION SOLAR FOTOVOLTAICA

arq fau U

Se analizó las orientaciones del objeto arquitectónico para poder deducir cual es la mejor ubicación para los paneles, con la finalidad de aprovechar el máximo asoleamiento posible. A raíz del análisis, se llegó a la conclusión que la mejor orientación que se logra es hacia el **Noreste**, ya que además, es hacia ésta que se inclina la superficie del techo.

DIMENSIONAMIENTO DEL COLECTOR SOLAR.

CALCULO DEL COLECTOR:

240 Ltrs / dia

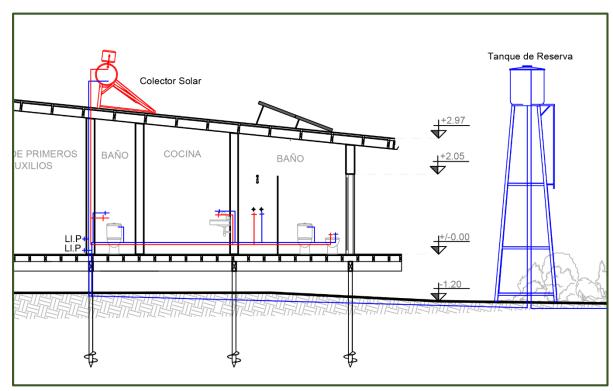
• ENERGÍA TOTAL ALMACENADA:

9600 Kcal/dia

• SUPERFICIE COLECTOR:

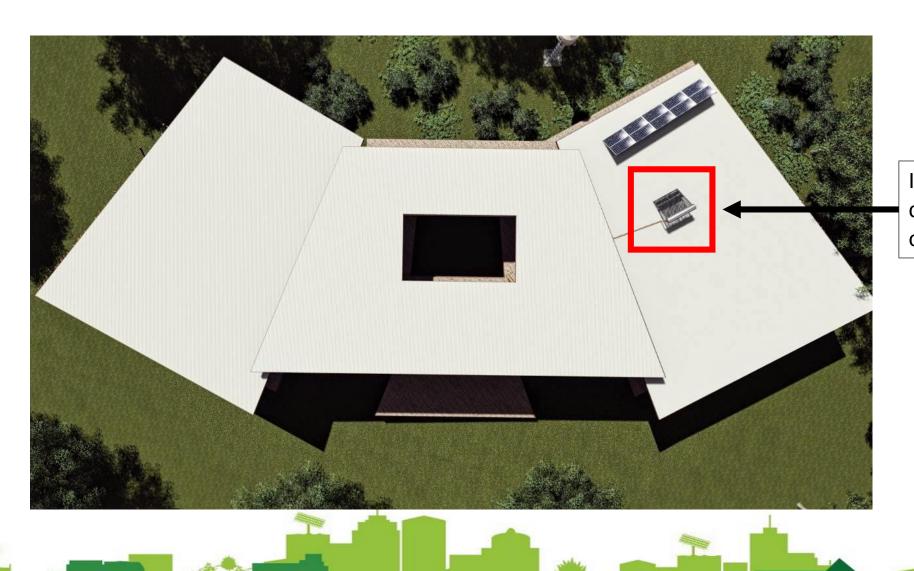
Área de colector necesaria = 3,87 m2

Intensidad de radiación solar								
LUGAR	LATITUD	JUNIO		DICIEMBRE				
		Kcal/ m2. dia	Kw.h/m2 dia	Kcal/ m2. dia	Kw.h/m2 dia			
POSADAS	27°	2190	2,5	5440	6,3			


ELECCIÓN DEL COLECTOR:

De acuerdo a las necesidades requeridas por el cálculo, se optó por un colector solar con un área reflectiva de 4,20 m2 y un tanque de acumulación de 300 litros, respondiendo al consumo diario de cuatro personas el cual es de 240 litros/dia.

<u>UBICACIÓN DE LA INSTALACION DEL COLECTOR SOLAR</u>



Instalación del colector solar orientación NE

