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Abstract In thiswork,we introduce amethodology to approximate unknownparameters that
appear on a non-linear reaction–diffusion model of tumor invasion. These equations consider
that tumor-induced alteration of micro-environmental pH furnishes a mechanism for cancer
invasion. A coupled system reaction–diffusion explaining this model is given by three partial
differential equations for the non-dimensional spatial distribution and temporal evolution
of the density of normal tissue, the neoplastic tissue growth and the excess concentration
of H+ ions. The tumor model parameters have a corresponding biological meaning: the
reabsorption rate, the destructive influence of H+ ions in the healthy tissue, the growth rate
of tumor tissue and the diffusion coefficient. We propose to solve the direct problem using
the Finite ElementMethod (FEM) andminimize an appropriate functional including both the
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real data (obtained via in-vitro experiments and fluorescence ratio imaging microscopy) and
the numerical solution. The gradient of the functional is computed by the adjoint method.

Keywords Reaction–diffusion equation · Tumor invasion · PDE-constrained optimization ·
Adjoint method · Finite element method

Mathematics Subject Classification 35Q92 · 35R30 · 65M60

1 Introduction

Cancer is one of the greatest killers in theworld althoughmedical activity has been successful,
despite great difficulties, at least for somepathologies.Agreat effort of humanand economical
resources is devoted, with successful outputs, to cancer modeling (Cristini and Lowengrub
2010; Adam and Bellomo 1997; Bellomo et al. 2008a, b; Byrne 2010; Preziosi 2003).

Some comments on the importance of mathematical modeling in cancer can be found in
the literature. In the work of Bellomo et al. (2008b) it is mentioned that “Cancer modelling
has, over the years, grown immensely as one of the challenging topics involving applied
mathematicians working with researchers active in the biological sciences. The motivation is
not only scientific as in the industrial nations cancer has now moved from seventh to second
place in the league table of fatal diseases, being surpassed only by cardiovascular diseases”.

In this work, we use the mathematical analyses first proposed by Gatenby and Gawlin-
ski (1996) which support the acid-mediated invasion hypothesis, hence it is acquiescent to
mathematical representation as a reaction–diffusion system at the tissue scale, describing the
spatial distribution and temporal development of tumor tissue, normal tissue, and excess H+
ion concentration.

The model predicts a pH gradient extending from the tumor–host interface. The effect of
biological parameters critical to controlling this transition is supported by experimental and
clinical observations (Martin and Jain 1994).

In thework byGatenby andGawlinski (1996), amodel tumor invasionwas introduced in an
attempt to find a common, underlying mechanism by which primary and metastatic cancers
invade and destroy normal tissues. This work is not attempting to model the large-scale
morphological features of tumors such as central necrosis or modeling the genetic changes
which result in transformation or seeking to understand the causes of these changes. Rather,
it concentrates on the microscopic-scale population interactions occurring at the tumor–
host interface, reasoning that these processes strongly influence the clinically significant
manifestations of invasive cancer. Specifically, this work hypothesizes that the metabolism of
the neoplastic tissue increased acid production and the diffusion of that acid into surrounding
healthy tissue creates a microenvironment where tumor cells survive and proliferate whereas
normal cells are unable to remain viable. The progressive loss of layers of normal cells
at the tumor–host interface facilitates tumor invasion. Key elements of this tumor invasion
mechanismare low interstitial pHof tumors due to primitivemetabolismand reduced viability
of normal tissue in a pH environment favorable to tumor tissue.

These model equations depend only on a small number of cellular and subcellular para-
meters. Analysis of the equations shows that the model predicts a crossover from a benign
tumor to one that is aggressively invasive as a dimensionless combination of the parameters
increases through a critical value.
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Fig. 1 A micrographs of the tumor–host interface from human squamous cell carcinomas of the head and
neck (Gatenby and Gawlinski 1996)

The dynamics and structure of the tumor–host interface in invasive cancers are shown
to be controlled by the same biological parameters which generate the transformation from
benign to malignant growth. A hypocellular interstitial gap, as we can see in Fig. 1 (Gatenby
and Gawlinski 1996, Figure 4a), at the interface is predicted to occur in some cancers.

In the study by Quiroga et al. (2015), we develop an algorithm that allows us to estimate
a unique parameter for a similar tumor model with a two-dimensional spatial variable. Here,
we are interested in obtaining approximations for a pair of parameters that are related to the
therapeutics, so we shall consider a one-dimensional spatial variable in the tumor model.

In this paper, we estimate a pair of parameters (the destructive influence of H+ ions in
the healthy tissue and the control in the buffer process of H+ ions concentration) using an
inverse problem. Moreover, via fluorescence ratio imaging microscopy, it is possible get data
about the concentration of hydrogen ions (Martin and Jain 1994). We propose a framework
via a PDE-constrained optimization problem, following the PDE-based model by Gatenby
and Gawlinski (1996). In this approach, tumor invasion is modeled via a coupled nonlinear
system of partial differential equations, which makes the numerical solution procedure quite
challenging.

This problem is a particular application of the inverse problems which are used in applied
sciences: structured population dynamics (Perthame andZubelli 2007), computerized tomog-
raphy and image reconstruction in medical imaging (van den Doel et al. 2011; Zubelli et al.
2003), and more specifically tumor growth (Agnelli et al. 2011; Hogea et al. 2008; Knopoff
et al. 2013), among many others.

We solve a minimization problem using a gradient-based method considering the adjoint
method to find the derivative of an objective functional. In this way, we would obtain the best
parameters that fit patient-specific data.

The contents of this paper is organized into seven sections as follows: Sect. 1 consists in
some preliminaries about the model and the definition of the direct problem. Section 2 deals
with the variational formulation of the direct problem. Section 3 considers the formulation
of the minimization problem and the reduced and adjoint problem, deriving the optimality
conditions for the problem. Section 4 finds the gradient of the functional with respect to
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parameters that does not appear explicitly in the equation. Section 5 deals with the numerical
solution of the adjoint problem, designing a suitable algorithm to solve it. In particular,
we use the Finite Element Method. In Sect. 6, we show some numerical simulations to give
information on the behavior of the functional and its dependence on the parameters including
the corresponding tables. Section 7 presents the conclusions and some future work related to
the contents of this paper.

2 Non-linear reaction–diffusion model of tumor invasion

We consider the mathematical model based on the theory of the change of the pH of the
environment, proposed by Gatenby and Gawlinski (1996):

∂N1

∂t
= r1N1

(
1 − N1

K1

)
− d1LN1, (1)

∂N2

∂t
= r2N2

(
1 − N2

K2

)
+ ∇ ·

(
DN2

(
1 − N1

K1

)
∇N2

)
, (2)

∂L

∂t
= r3N2 − d3L + DN3�L , (3)

which determines the spatial and temporal distribution of three variables: N1(x, t), the density
of normal tissue; N2(x, t), the density of neoplastic tissue; and L(x, t), the excess concen-
tration of H+ ions. The units of N1 and N2 are cells/cm3 and excess H+ ion concentration
is expressed as a molarity (M), x and t are the position (in cm) and time (in seconds),
respectively.

In Eq. (1), the behavior of the healthy tissue is determined by the logistic growth of N1

with growth rate r1 and carrying capacity K1, and the interaction of N1 with excess H+ ions
leading to a death rate proportional to L . The number d1L is the excess acid concentration,
dependent death rate in accord with the well-described decline in the growth rate of normal
cells, due to the reduction of pH from its optimal value of 7.4. The constants r1, d1 and K1

have units of 1/s, l/(M s) and cells/cm3, respectively.
For Eq. (2), the neoplastic tissue growth is described by a reaction–diffusion equation.

The reaction term is governed by a logistic growth of N2 with growth rate r2 and carrying
capacity K2. The diffusion term depends on the absence of healthy tissue with a diffusion
constant DN2 . Constants r2, K2 and DN2 have units of 1/s, cells/cm

3 and cm2/s, respectively.
In Eq. (3), it is assumed that excess H+ ions are produced at a rate proportional to the

neoplastic cell density, and diffuse chemically. An uptake term is included to take into account
the mechanisms for increasing local pH (e.g., buffering and large-scale vascular evacuation;
Gatenby and Gawlinski 1996). Constant r3 is the production rate [M cm3/(cell s)], d3 is the
reabsorption rate (1/s), and DN3 is the H

+ ion diffusion constant (cm2/s).
All the parameter values can be found in Table 1.

2.1 Nondimensionalization

Following the ideas exposed in Gatenby and Gawlinski (1996), and considering one-
dimensional space variables, the mathematical model is rescaled and the spatial and temporal
domains are transformed onto the intervals I = (0, 1) and [0, T ], respectively. Hence, let us
define the following change of variables:
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Table 1 Parameter values used
in Gatenby and Gawlinski (1996)

Parameter Estimate

K1 5 × 107/cm3

K2 5 × 107/cm3

r1 1 × 10−6/s

r2 1 × 10−6/s

DN2 2 × 10−10 cm2/s

DN3 5 × 10−6 cm2/s

r3 2.2 × 10−17 M cm3/s

d3 1.1 × 10−4/s

u1 = N1

K1
u2 = N2

K2
u3 = L

L0

τ = r1t ξ =
√

r1
DN3

x
(4)

where L0 = r3K2/d3. We will continue denoting x and t instead of ξ and τ , respectively.
Using the transformation (4) the dimensionless form of the Eqs. (1)–(3) becomes

∂u1
∂t

= u1(1 − u1) − δ1u1u3, (5)

∂u2
∂t

= ρ2u2(1 − u2) + ∂

∂x

(
D2(1 − u1)

∂u2
∂x

)
, (6)

∂u3
∂t

= δ3(u2 − u3) + ∂2u3
∂x2

, (7)

for (x, t) ∈ I × (0, T ], where the four dimensionless quantities which parameterize the
model are given by:

δ1 = d1r3K2

d3r1
, ρ2 = r2

r1
, D2 = DN2

DN3

, δ3 = d3
r1

.

The interaction parameters between different cells (healthy and tumor) and concentration
of H+ are difficult to measure experimentally. This is the reason for which we propose to
estimate δ1. Also we will focus on δ3 because we are interested in the buffering process that
will allow to initiate the study of the therapeutic of this problem. The other parameters can
be estimated by different techniques (see Table 1).

2.2 Initial and boundary conditions

At t = 0 we will consider the tumor at a certain stage of its evolution. Hence, the initial
conditions are:

ui (x, 0) = u0i (x), i = 1, 2, 3, (8)

for all x ∈ [0, 1]. We assume that the tumor is on the left of the domain, in the sense that the
tumor cells are not moving. Then, for all t ∈ (0, T ], we have

∂u1
∂x

(0, t) = 0, u1(1, t) = 1, (9)
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∂u2
∂x

(0, t) = 0, u2(1, t) = 0, (10)

∂u3
∂x

(0, t) = 0, u3(1, t) = 0. (11)

From now on, Eqs. (5)–(11) will be referred to as the direct problem.

2.3 Weak formulation of the direct problem

In this subsection, we use 〈·, ·〉 to denote the duality pairing, i.e., 〈·, ·〉 : U∗ ×U �→ R such
that 〈w, u〉 = w(u) (the space is always clear from the context), we emphasize thatU∗ is the
space of continuous linear functionals over U .

Using the variational techniques for obtaining the weak solution of the direct problem
(Ladyzhenskaya et al. 1988; Kinderlehrer and Stampacchia 2000; Evans 1998), we can write
the weak formulation of (5)–(11) as E(u, ω) = 0, where E : U × R2 �→ U∗ × (L2(I ))3

such that

〈E(u, ω), ζ 〉 =
∫
IT

(
∂u1
∂t

λ1 − (1 − ũ1 − u1 − δ1u3)(ũ1 + u1)λ1

)

+
∫
IT

(
∂u2
∂t

λ2 − ρ2u2(1 − u2)λ2 + D2(1 − ũ1 − u1)
∂u2
∂x

∂λ2

∂x

)

+
∫
IT

(
∂u3
∂t

λ3 + δ3(u3 − u2)λ3 + ∂u3
∂x

∂λ3

∂x

)

+
∫ 1

0
(ũ1(0) + u1(0) − u01)γ1 +

∫ 1

0
(u2(0) − u02)γ2

+
∫ 1

0
(u3(0) − u03)γ3

=
〈
∂u

∂t
+ F(u), λ

〉
+ 〈

u(0) − u0, γ
〉
, (12)

where IT = I × [0, T ], u = (u1, u2, u3) ∈ U , ũ(x, t) = ṽ(x) with ṽ ∈ (H1(I ))3 and
ṽ(1) = (1, 0, 0) is the Dirichlet lift, ω = (δ1, δ3) ∈ R2, ζ = (λ, γ ) with λ = (λ1, λ2, λ3) ∈
U , γ = (γ1, γ2, γ3) ∈ (L2(I ))3,

U = {
u ∈ L2(0, T ; V ) | ∂u

∂t ∈ L2(0, T ; V ∗)
}
,

L2(0, T ; V ) =
{
u : (0, T ) �→ V |

∫ T

0
‖u(t)‖2

(H1(I ))3 < +∞
}

,

with V = {v ∈ (H1(I ))3 | v(1) = 0 ∈ R3}, and H1(I ) and L2(I ) are the standard Sobolev
and Lebesgue function spaces, respectively. In summary, for u such that E(u, ω) = 0 we
obtain that ũ + u is a weak solution of the direct problem.

3 The minimization problem

Suppose that in a time interval 0 ≤ t ≤ T experimental information is available and that
given a choice of ω we represent by u the solution of the direct problem. Then, we propose
to estimate δ1 and δ3 by solving the following inverse problem:
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Given available information over the time window 0 ≤ t ≤ T , find a parameter ω able
to generate data u that best match the given data.

First of all, we have to check which variables are observable, that is, which variables can
be experimentally measured. Martin and Jain (1994) and Gatenby et al. (2006) proposed to
measure the excess concentration of H+ ions at certain times tk , k = 1, . . . , M using fluores-
cence ratio imaging microscopy. We assume that we have observations of the dimensionless
variable u3 that correspond to the variable L (the excess concentration of H+ ions).

We define a distance (depending on the parameter ω) between the experimental data and
the solution of the PDE system generated using ω as a parameter. This distance is in fact an
objective functional to be minimized. So, the functional J : U ×R2 �→ R could be defined
as:

J (u, ω) = 1

2

∫ T

0

∫ 1

0

[
u3 (x, t) − û3 (x, t)

]2
χ(t)dxdt, (13)

where

χ(t) =
M∑
k=1

e
(−C(t−tk )2

)
,

is a weight function with C large enough, û3 (x, t) is the excess concentration measured
experimentally and u3 (x, t) is the excess concentration of H+ ions obtained by solving the
direct problem for a certain choice of ω.

Thus,we are interested in finding a solution of the PDE-constrainedminimization problem

minimize
(u,ω)∈U×R2

J (u, ω)

subject to E(u, ω) = 0,
ω ∈ ad,

(14)

where ad is the set of admissible values for ω. In our case, we can choose ad = (0,∞) ×
(0,∞). Notice that the constraint E(u, ω) = 0 constitutes the direct problem.

There is a fundamental difference between the direct and inverse problem.Usually, inverse
problems are ill posed in the sense of existence, uniqueness and stability of the solution. Thus,
regularization techniques can be considered (van denDoel et al. 2011; Engl et al. 1996;Kirsch
2011).

3.1 The adjoint method

In the following, for a function F : U × D �→ Z such that (u, δ) �→ F(u, δ), we denote
by F ′(u, δ) the full Fréchet-derivative and by ∂F

∂u (u, δ) and ∂F
∂δ

(u, δ) the partial Fréchet
derivatives of F at (u, δ). For a linear operator T : V �→ Z we denote by T ∗ : Z∗ �→ V ∗
the adjoint operator of T .

We will consider the so-called reduced problem:

minimize
ω∈R2

J̃ (ω) = J (S(ω), ω)

subject to ω ∈ ad,
(15)

where J̃ : R2 �→ R and S : ad �→ U is given as the solution of E(S(ω), ω) = 0.
The existence of the function S is obtained by the implicit function theorem. According to
the ideas exposed by Brandenburg et al. (2009), Hinze (2009), this can be done since E is
a continuously Fréchet-differentiable function, and assuming that for each ω ∈ ad there
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exists a unique corresponding solution u = S(ω) such that the derivative ∂E
∂u (S(ω), ω) is a

continuous linear operator continuously invertible. In addition, the solution of the problem
(15) can be obtained by assuming that ad is a compact set and J is a continuous function.

To find a minimum of the continuously differentiable function J̃ , it will be important to
compute the derivative of this reduced objective function. Hence, we will show a procedure
to obtain J̃ ′ using the adjoint approach.

Since E(S(ω), ω) = 0, we have that J̃ (ω) = J (S(ω), ω) + 〈E(S(ω), ω), ζ 〉. Thus,

J̃ ′(ω) = (
S′(ω)

)∗
(

∂ J

∂u
(S(ω), ω) +

(
∂E

∂u
(S(ω), ω)

)∗
ζ

)

+ ∂ J

∂ω
(S(ω), ω) +

(
∂E

∂ω
(S(ω), ω)

)∗
ζ.

For a given ω, let us consider ζω ∈ U × (L2(I ))3 as the solution of the so-called adjoint
problem:

∂ J

∂u
(S(ω), ω) +

(
∂E

∂u
(S(ω), ω)

)∗
ζω = 0. (16)

Note that each term in (16) is an element of the space U∗. Therefore, for uω = S(ω) we
obtain that

J̃ ′(ω) = ∂ J

∂ω
(uω, ω) +

(
∂E

∂ω
(uω, ω)

)∗
ζω, (17)

where uω and ζω are solutions of the direct and adjoint problem, respectively.
Notice that to obtain J̃ ′(ω) we need first to compute uω by solving the direct problem,

followed by the calculation of ζω by solving the adjoint problem. For computing the second
term of (17) it is not necessary to obtain the adjoint of ∂E

∂ω
(u, ω) but just its action over ζ .

4 Getting the derivative of the functional

To obtain the adjoint operator of ∂E
∂u (u, ω) : U �→ U∗ × (L2(I ))3, recall that

〈(
∂E

∂u
(u, ω)

)∗
ζ, η

〉
=

〈
∂E

∂u
(u, ω)η, ζ

〉
,

for any η ∈ U and ζ ∈ U × (L2(I ))3. Since
〈
∂E

∂u
(u, ω)η, ζ

〉
= lim

μ→0

〈E(u + μη,ω), ζ 〉 − 〈E(u, ω), ζ 〉
μ

,

after some algebraics, it can be shown that
〈
∂E
∂u (u, ω)η, ζ

〉

=
∫
IT

(
∂η1

∂t
− (1 − 2(ũ1 + u1) − δ1u3)η1 + δ1(ũ1 + u1)η3

)
λ1

+
∫
IT

(
∂η2

∂t
− ρ2(1 − 2u2)η2

)
λ2 +

∫
IT

D2

(
−∂u2

∂x
η1 + (1 − ũ1 − u1)

∂η2

∂x

)
∂λ2

∂x

+
∫
IT

(
∂η3

∂t
− δ3(η2 − η3)

)
λ3 +

∫
IT

∂η3

∂x

∂λ3

∂x
+

∫ 1

0
(η1(0)γ1+η2(0)γ2 + η3(0)γ3) .
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Using integration by parts for time, we obtain

〈(
∂E
∂u (u, ω)

)∗
ζ, η

〉
=

∫
IT

(
−∂λ1

∂t
− (1 − 2(ũ1 + u1) − δ1u3)λ1 − D2

∂u2
∂x

∂λ2

∂x

)
η1

+
∫
IT

(
−∂λ2

∂t
− ρ2(1 − 2u2)λ2 − δ3λ3

)
η2

+
∫
IT

D2(1 − ũ1 − u1)
∂λ2

∂x

∂η2

∂x

+
∫
IT

(
−∂λ3

∂t
+ δ1(ũ1 + u1)λ1 + δ3λ3

)
η3 +

∫
IT

∂λ3

∂x

∂η3

∂x

+
∫ 1

0

(
λ1(T )η1(T ) + (γ1 − λ1(0))η1(0)

)

+
∫ 1

0

(
λ2(T )η2(T ) + (γ2 − λ2(0))η2(0)

)

+
∫ 1

0

(
λ3(T )η3(T ) + (γ3 − λ3(0))η3(0)

)
.

On the other hand,

〈
∂ J

∂u
(u, ω), η

〉
=

∫ T

0

∫ 1

0
(u3(x, t) − û3(x, t))η3(x, t)χ(t)dxdt.

Since ∂ J
∂u (u, ω) + ( ∂E

∂u (u, ω))∗ζ = 0 if and only if 〈 ∂ J
∂u (u, ω) + ( ∂E

∂u (u, ω))∗ζ, η〉 = 0 for all
η ∈ U , we conclude that ζ = (λ, γ ) satisfies ∂ J

∂u (u, ω) + ( ∂E
∂u (u, ω))∗ζ = 0 if and only if

γ = λ(0), λ(T ) = 0 with λ ∈ U satisfying

0 =
∫
IT

(
−∂λ1

∂t
− (1 − 2(ũ1 + u1) − δ1u3)λ1 − D2

∂u2
∂x

∂λ2

∂x

)
η1

+
∫
IT

(
−∂λ2

∂t
− ρ2(1 − 2u2)λ2 − δ3λ3

)
η2

+
∫
IT

D2(1 − ũ1 − u1)
∂λ2

∂x

∂η2

∂x

+
∫
IT

(
−∂λ3

∂t
+ δ1(ũ1 + u1)λ1 + δ3λ3 + (u3 − û3)χ

)
η3

+
∫
IT

∂λ3

∂x

∂η3

∂x

=
〈
−∂λ

∂t
+ H(λ), η

〉
, (18)

for all η ∈ U . Thus, the weak formulation (18) shall be solved to get ζω. Notice that the
adjoint equations are posed backwards in time, with a final condition at t = T , while the
state equations are posed forward in time, with an initial condition at t = 0.

Now, to compute the adjoint operator of ∂E
∂ω

(u, ω) : R2 �→ U∗ × (L2(I ))3, for any
q = (q1, q3) ∈ R2 and ζ ∈ U × (L2(I ))3, we have

123



A. A. I. Quiroga et al.

〈(
∂E

∂ω
(u, ω)

)∗
ζ, q

〉
=

〈
∂E

∂ω
(u, ω)q, ζ

〉

= lim
μ→0

〈E(u, ω + μq), ζ 〉 − 〈E(u, ω), ζ 〉
μ

=
∫
IT

(ũ1 + u1)u3λ1q1 +
∫
IT

(u3 − u2)λ3q3.

On the other hand, since ∂ J
∂ω

(u, ω) = 0, we obtain the following expression for (17),

J̃ ′(ω) =
(

∂E

∂ω
(uω, ω)

)∗
ζω =

⎡
⎢⎢⎣

∫
IT

(ũ1 + u1)u3λ1∫
IT

(u3 − u2)λ3

⎤
⎥⎥⎦ . (19)

5 Algorithms for the direct and inverse problem

The minimization of the objective functional J̃ (which solution are the model parameters) is
an iterative procedure that needs the derivative of the objective functional. Solving two PDE
problems (the direct and adjoint problems) per iteration we can obtain J̃ ′, which is cheaper
than solving the direct problem many times per iteration to get the derivative (Hinze 2009).
We have implemented the algorithms in MATLAB, using the Finite Element Method for
solving the direct and adjoint problems, and the Sequential Quadratic Programming (SQP)
method for solving the optimization problem using the built-in function fmincon. At time
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Fig. 2 Density of health and tumor cells, and excess concentration of H+ ions at fixed time (t = 20) with
respect to x variable, for δ1 = 12.5 and δ3 = 70
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t = 20 and in terms of x variable, Fig. 2 shows excess concentration of H+ ions, density of
health cells and density of tumor cells.

In gradient-based optimization methods, we need to have the derivative of the objective
function (Nocedal andWright 2006). The solution of the adjoint problem (once per iteration)
allows to get the derivative regardless the number of inversion variables. Notice that the direct
and adjoint problems can be solved by the Finite Element Method.

Below we present the procedure to minimize the functional J̃ .

Algorithm 51 Adjoint-based minimization method

1. Give an initial guess ω0 for the parameter.
2. In step k, given ωk , solve the direct and adjoint problems.
3. Get the derivative of the functional, i.e., J̃ ′(ωk ), using (19).
4. Obtain ωk+1 by performing one iteration of the SQP method.
5. Stop using the criteria of fmincon.

To perform the minimization procedure, it is necessary to solve both the direct problem
and the adjoint problem.

Algorithm 52 Direct problem

1. Perform an implicit Euler step to find the state variables u, that is:

u(·, tn) − u(·, tn−1)

τ
= F(u(·, tn)),

where tn = tn−1 + τ , F(u(·, tn)) is a nonlinear functional and the initial condition is u0(x) = u(x, 0).
2. Use FEM to make a discretization of ui (x, tn):

ui (x, tn) ≈
nod∑
j=1

uni, jφ j (x), i = 1, 2, 3,

where φ j are the linear shape functions and nod is the number of uniform distributed nodes for the spatial
meshgrid for [0, 1].

3. Calling Un = [Un
1 ,Un

2 ,Un
3 ] ∈ Rq , where

Un
i = [uni,1, . . . , uni, j , . . . , uni,nod ] ∈ Rnod , i = 1, 2, 3,

use theNewtonmethod to findUn ∈ Rq such asUn−Un−1−τG(Un) = 0,whereG is the discretization
of F .

Algorithm 53 Adjoint problem

1. Perform an implicit Euler step to find the adjoint variable λ:

−λ(·, tn) − λ(·, tn−1)

τ
= H(λ(·, tn−1)),

where the final condition is λ(·, T ) = 0.
2. Use FEM to make a discretization of λ(·, tn) and solve the linear problem

λn−1 − λn − τK (λn−1) = 0,

where K is the discretization of H .
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6 Computational results

In this section, we evaluate the performance of the adjoint-based optimization method pro-
posed in this work. We show numerical simulations for some test cases using Algorithm 51.

Let us consider a synthetic experiment where û3(x, t) is generated via the direct model,
for a choice of the model parameters ρ2 = 1, D2 = 4×10−5 and ω̂ = (12.5, 70). We choose
δ̂1 = 12.5 with the objective of recovering the behavior of different cell densities as in Fig. 1.

The graph of (15) in terms ofω can be seen in Fig. 3, leaving constant the other parameters.
Notice that J̃ looks convex with respect to ω.

We want to test if we can retrieve the original value of the parameter. This is not an easy
task since we do not know, for instance, if the optimization problem has a solution, or if that
solution is unique, or if the optimization problem has multiple local minima.

Wehave runAlgorithm51 for several values of ω̂where the initial conditionω0 is randomly
taken. Algorithms 52 and 53 were solved using the following algorithmic parameters: τ =
0.5, T = 20, nod = 201 andUad = [0, 20]× [80, 120]. Results can be seen in Table 2 where
we can observe that the retrieved parameter is obtained very accurately since the standard
deviation is small.

Since we have accurately retrieved the value of ω̂ for different initial values ω0, we will
consider ω0 = (8, 50) in the next experiment.
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Fig. 3 The functional J̃ for û3 generated with ω̂ = (12.5, 70)

Table 2 Experiments for
randomly initial data ω0,
ω̂ = (12.5, 70), where S is the
standard deviation and eδi is the
relative error

ω̄ S eδi

δ1 12.4749 1.5194 6.6878−3

δ3 69.9732 4.9359−2 3.7610−4
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Table 3 Experiments for
ω̂ = (12.5, 70) and σ = 0.05,
where S is the standard deviation
and eδi is the relative error

ω̄ S eδi

δ1 13.2226 2.2095 1.7215−2

δ3 70.1958 8.5686−1 2.7577−3

Table 4 Experiments for
ω̂ = (12.5, 70) and σ = 0.08,
where S is the standard deviation
and eδi is the relative error

ω̄ S eδi

δ1 11.2916 2.8904 9.9735−3

δ3 69.8592 3.3723−1 1.9819−3

Table 5 Experiments for
ω̂ = (12.5, 70) and σ = 0.10,
where S is the standard deviation
and eδi is the relative error

ω̄ S eδi

δ1 11.7134 1.6167 4.0346−3

δ3 69.9574 7.8445−2 5.9917−4

Table 6 Experiments for
ω̂ = (12.5, 70) and σ = 0.15,
where S is the standard deviation
and eδi is the relative error

ω̄ S eδi

δ1 10.1207 3.2747 2.6460−2

δ3 69.6646 5.1785−1 4.7218−3

The presence of noise in the data (due for example to measurement errors) may imply
strong numerical instabilities in the solution of an inverse problem (Bertero and Piana 2006).
One of the techniques to obtain values of û3 is by fluorescence ratio imaging microscopy
(Martin and Jain 1994). Measurement errors can be seen as random perturbations in the data.

Therefore, we can assume that we have observations of û3 affected by Gaussian random
noise with zero mean and standard deviation σ = 0.01, 0.05, 0.08, 0.1, 0.15. In Tables 3,
4, 5, 6 we show, for each σ , the average ω̄ over 10 values of ω, the standard deviation S and

the relative error for each parameters eδi = |δ̂i−δ̄i |
δ̂i

, i = 1, 3.

7 Conclusions

A miscellany of new strategies, experimental techniques and theoretical approaches are
emerging in the ongoing battle against cancer. Nevertheless, as new, ground-breaking discov-
eries relating to many and diverse areas of cancer modeling are made, scientists often have
recourse to mathematical modeling to elucidate and interpret these experimental findings
(Adam and Bellomo 1997; Bellomo et al. 2008b; Byrne 2010; Araujo and McElwain 2004),
and it became clear that these models are expected to success if the parameters involved in the
modeling process are known. Or eventually, taking into account that some biological para-
meters may be unknown (especially in-vivo), the model can be used to obtain them (Agnelli
et al. 2011; van den Doel et al. 2011).

This paper, as already mentioned in Sect. 1, aims to offer a mathematical tool for the
obtention of phenomenological parameters δ1 and δ3 representing the negative influence of
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the protons ions in the tissue (the acidification of the environment where the cells live) and
the buffering (the way that the body naturally eliminates the exceeding of protons ions),
respectively. These parameters can be identified by inverse estimation, by making suitable
comparisons with experimental data. The inverse problem was stated as a PDE-constrained
optimization problem, which was solved using the adjoint method. In addition, the gradient
of the proposed functional is obtained and can be extended, in principle, to any number of
unknown parameters.

We remark that the parameter estimation via PDE-constrained optimization is a general
approach that can be used, for instance, to consider the effects of nonlinear interaction between
the health and tumor cells (McGillen et al. 2013), and the buffering coefficient that allow us
in future to design a methodology to take into account the therapeutic of our problem.

As a future work, we are interested in the dependence of the δ3 on time, as in Martin et al.
(2010).
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